PHYLOGENY
 AND HISTORICAL BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES ${ }^{1}$

André S. Chanderbali, ${ }^{2.3}$ Henk van der Werff, ${ }^{3}$ and Susanne S. Renner ${ }^{2,3}$

Abstract

Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currently recognized genera are inferred from sequence variation in the chloroplast and nuclear genomes. The $\operatorname{trn} \mathrm{L}-\operatorname{trn} \mathrm{F}, \operatorname{trn} \mathrm{T}-\operatorname{trn} \mathrm{L}, \operatorname{psbA}-\operatorname{trn} \mathrm{H}$, and rpll6 regions of cpDNA, and the 5^{\prime} end of 26 S rDNA resolved major lineages, while the ITS/ 5.8 S region of rDNA resolved a large terminal clade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstruct the biogeographic history of the family. Results suggest Lauraceae radiated when trans-Tethyean migration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilaurus clade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora documented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae clade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group and Cinnamomum group (of Cinnamomeae) show tropical amphi-Pacific disjunctions here credited to disruption of boreotropical ranges by Eocene-Oligocene climatic cooling. The Ocotea complex accommodates remaining Cinnamomeae and shows a trans-Atlantic disjunction possibly derived from a Madrean-Tethyan ancestral distribution. These findings support Laurasian ancestry for most extant Lauraceae, with their considerable neotropical representation primarily derived from Early Miocene radiation of the Ocotea complex upon reaching South America.

Key words: biogeography, boreotropical, chloroplast DNA, Gondwana, Lauraceae, Laurasia, Madrean-Tethyan, molecular clock, phylogeny, ribosomal DNA.

Lauraceae form a large family of woody plants (except the herbaceous parasite Cassytha), with about 50 genera and 2500 to 3000 species distributed throughout tropical to subtropical latitudes. They are among the more speciose basal angiosperm families and have a fossil record that reaches back to the Mid-Cretaceous (Drinnan et al., 1990; Eklund \& KvaČek, 1998). Current taxonomic diversity is centered in tropical America and Australasia, and although poorly represented in continental Africa, Lauraceae flourish in Madagascar. In the American tropics they list among the most
prominent components of lowland forests and are frequently dominant elements in montane vegetation (Gentry, 1988).

Given their antiquity, widespread distribution, and ecological prominence, Lauraceae provide a model system for investigating angiosperm biogeography. Moreover, the three tribes recognized by van der Werff and Richter (1996) suggest that major divisions in the family draw along geographic lines. Laureae include three genera with North Ameri-can-Asian disjunctions (Litsea, Lindera, Sassafras), Mediterranean Laurus, and Asian endemics (e.g.,

[^0]Actinodaphne and Neolitsea). Cryptocaryeae include pantropical Beilschmiedia and Cryptocarya, and other predominantly Southern Hemispheric genera with narrower ranges (e.g., Endiandra and Potameia). Perseeae are centered in the Neotropics with three widespread genera. Cinnamomum is disjunct between the American and Asian (sub)tropics; Persea (including Machilus) ranges throughout the Neotropics (into the southeastern U.S.), the Canary Islands, and Asia; and Ocotea has about 300 neotropical species, one in Macaronesia, a few in Africa, and about 30 more in Madagascar. Apart from a few Asian genera (e.g., Dehaasia and Phoebe) considered closely related to Persea, all other genera of Perseeae are endemic to the Neotropics (e.g., Aiouea, Aniba, Endlicheria, Licaria, Nectandra, Pleurothyrium, and Rhodostemonodaphne). The distributions of Laureae and Cryptocaryeae are consistent with Laurasian and Gondwanan histories, respectively, but that of Perseeae is ambiguous in this regard. The trans-Atlantic distribution of Ocotea suggests West Gondwanan history, but the tropical amphi-Pacific distributions of Cinnamomum and Persea suggest Laurasian affinities. Whether or not these ambiguities are artifacts of tribal and/or generic circumscription is unclear.

The systematics of Lauraceae is unsettled. Laureae are recognized in most prior classifications, but other tribal concepts are not widely accepted. Van der Werff and Richter's (1996) Cryptocaryeae and Perseeae are revised concepts supported by Richter's (1981) study of wood and bark anatomy. Some aspects of Cryptocaryeae gain support from embryology (Heo et al., 1998), but characters for further subdivision of the family were not found. A cladistic analysis of molecular data (Rohwer, 2000) also provided support for Cryptocaryeae and united Perseeae and Laureae in a well-supported but unresolved clade. This Perseeae-Laureae clade accommodates most of the family, and its distribution implies a disjunction between the American and Asian tropics with a minor African presence. Such distributions can be credited to extinction of Gondwanan lineages in Africa (e.g., Raven \& Axelrod, 1974), but Laurasian ancestry followed by radiation in tropical Asia and America was favored by Rohwer (2000). Tropical Asia is acknowledged as a harbor for Laurasian relicts (e.g., Wolfe, 1975), but Rohwer's hypothesis that the approximately 800 neotropical species of Perseeae are derived from Laurasian immigrants contrasts with the Gondwanan origin credited to most major neotropical plant groups (e.g., Raven \& Axelrod, 1974; Gentry, 1982; references in Goldblatt, 1993; Burnham \& Graham, 1999). Further, Raven and Axelrod (1974: 563) al-
lowed that Persea was an "old Laurasian genus" but suggested that subgenus Eriodaphne, like all other members of the family, arrived in South America via Africa. Alternatively, Taylor (1988) suggested that the fossil flower Androglandula tennessensis Taylor, from the Eocene of North America, is comparable to Cinnamomum, Ocotea, and Nectandra, indicating a boreotropical history for this group of genera, with subsequent migration to South America. Raven and Axelrod (1974) and Taylor (1988) allowed that although differing in the direction of migration, the high level of species diversity and generic endemism require a Late Cretaceous-Early Tertiary arrival in South America. In contrast, Rohwer and Kubitzki (1993) preferred a more recent arrival of this group, possibly as late as the Pliocene closure of the Panamanian Isthmus, followed by rapid radiation in South America.

These alternative views are here assessed by adding a temporal dimension to a phylogenetic estimate for Lauraceae reconstructed with molecular characters retrieved from both chloroplast and nuclear genomes.

Materials and Methods

TAXON AND MOLECULAR SAMPLING
A total of 131 species, 122 representing 44 of the 55 currently recognized genera of Lauraceae, and 9 representing 3 outgroup families (Gomortegaceae, Hernandiaceae, and Monimiaceae) were included in this study. Seventy-seven in-group species were included in a broad-scale study based on sequence variation in the $\operatorname{trn} \mathrm{L}-\operatorname{trn} \mathrm{F}$ and $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}$ intergenic spacers of cpDNA. Guided by the findings of this molecular and taxon sampling a twotiered approach was adopted to obtain better representation and phylogenetic resolution at the generic level. Thus a subset of the species representing basal lineages in Lauraceae was also sequenced for the $\operatorname{trn} \mathrm{T}-t r n \mathrm{~L}$ spacer, and the $r p l 16$ intron of cpDNA , as well as the 5^{\prime} end of 26 S rDNA, while 94 species representing Perseeae, Laureae, and their sister group were sampled for the ITS/ 5.8S region of nrDNA. Table 1 provides GenBank information for all accessions.

DNA EXTRACTION, PCR AMPLIFICATION, AND SEQUENCING

Total DNA was obtained from silica-gel-dried, herbarium, or fresh leaves using Dneasy (QIAGEN) extraction kits. PCR amplification of chloroplast loci was conducted using standard protocols (e.g., White et al., 1990). For nuclear markers, 10\%
Table 1. Sources of plant material. ${ }^{1}$ Previously submitted to Genbank. Contributed by: ${ }^{2}$ J. Rohwer, Univ. Hamburg; ${ }^{3}$ K. Ueda, Univ. Osaka.; and ${ }^{4}$ M. Zanis, Washington State Univ.

Taxon	Provenance	Voucher	Genbank accession numbers					
			$t r n \mathrm{~L}-t r n \mathrm{~F}$	$p s b A-t r n \mathrm{H}$	$t r n \mathrm{~T}-\operatorname{trn} \mathrm{L}$	rpl16	26 S	ITS/5.8S
Lauraceae								
Actinodaphne sesquipedalis Meisn.	Malaysia, Kuala Lumpur	Saw Leng Guan s.n. (KEP)	AF268695	AF268787	-	AF268239	-	AF272247
Adenodaphne uniflora (Guill.) Kosterm.	New Caledonia, Province du Sud	van der Werff 15895 (MO)	-	-	-	-	-	AF272248
Aiouea costaricensis (Mez) Kosterm.	Costa Rica, Heredia	Grayum 8241 (HBG) (J. Rohwer sequence)	-	-	-	-	-	AF272249 ${ }^{2}$
Aiouea dubia (HBK) Mez	Ecuador, Loja	Madsen 75433 (AAU) (J. Rohwer sequence)	-	-	-	-	-	AF272250 ${ }^{2}$
Aiouea guianensis Aubl.	Guyana, Demerara, Timerhi	Taylor 12085 (MO)	AF268696	AF268780	-	-	-	AF272251
Alseodaphne semecarpifolia Nees	Sri Lanka, Central Prov, Kandy	Malcomber 2753 (MO)	AF268697	AF268799	-	-	-	AF272252
Anaueria brasiliensis Kosterm.	Peru, Loreto, Iquitos	Vásquez 25228 (MO)	AF268698	AF268800	AF268840	AF268247	-	AF272253
Aniba cinnamomiflora C. K. Allen	Venezuela, Trujillo, Boconó	Cuello 955 (MO)	AF268700	AF268770	AF268823	-	-	AF272254
Aniba excelsa Kosterm.	Guyana, Demerara, Mabura Hill	Chanderbali 226 (MO)	-	-	-	-	-	AF272255
Aniba hypoglauca Sandwith	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 165 (MO)	AF268699	AF268771	AF268822	-	-	-
Aniba panurensis (Meisn.) Mez	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 248 (MO)	-	-	-	-	-	AF272256
Apollonias barbujana (Cav.) Bornm.	Canary Islands, Tenerife	Bramwell 628 (MO)	-	-	-	-	-	AF272257
Aspidostemon sp.	Madagascar, Toliara	van der Werff 12737 (MO)	AF268701	AF268819	AF268843	AF268251	-	-
Beilschmiedia brenesii C. K. Allen	Costa Rica, Puntarenas	Yasuda 1310 (MO)	AF268702	AF268809	-	-	AF262004 ${ }^{1}$	-
Beilschmiedia madagascariensis Kosterm.	Madagascar, Toliara	Lowry 5015 (MO)	-	AF268810	-	-	-	-
Beilschmiedia ovalis (Blake) C. K. Allen	Costa Rica, San Jose	Yasuda 1301 (MO)	AF268703	AF268811	-	-	AF270472	-
Beilschmiedia sary Kosterm.	Madagascar, Toamasina	van der Werff 12800 (MO)	-	AF268812	-	-	-	-

Table 1. Continued.

Taxon	Provenance	Voucher	Genbank accession numbers					
			$t r n \mathrm{~L}-t r n \mathrm{~F}$	$p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}$	$t r n \mathrm{~T}-t r n \mathrm{~L}$	rpl16	26 S	ITS/5.8S
Beilschmiedia tilaranensis Nishida	Costa Rica, Guanacaste	Yasuda 1313 (MO)	AF129014 ${ }^{1}$	AF129045 ${ }^{1}$	AF129015 ${ }^{1}$	AF127265 ${ }^{1}$	-	-
Beilschmiedia velutina (Kosterm.) Kosterm.	Madagascar, Antsiranana	Georges 361 (MO)	AF268704	AF268813	-	-	-	-
Caryodaphnopsis bilocellata van der Werff	Vietnam, Ninh Binh	van der Werff 14195 (MO)	AF23032 ${ }^{1}$	AF261995 ${ }^{1}$	AF233603 ${ }^{1}$	AF232743 ${ }^{1}$	AF262005 ${ }^{1}$	-
Caryodaphnopsis tomentosa van der Werff	Peru, Loreto, Iquitos	Vásquez 25239 (MO)	AF268705	AF268807	AF268842	AF268248	-	-
Cassytha filiformis L.	Guyana, Rupununi, Karanambo	Chanderbali 205 (MO)	AF232034 ${ }^{1}$	AF261996 ${ }^{1}$	AF233605 ${ }^{1}$	AF232744 ${ }^{1}$	AF262006 ${ }^{1}$	-
Cassytha pubescens R. Br.	Australia, Victoria, Geelong	Foreman 1913 (MEL)	AF232033 ${ }^{1}$	-	AF233604 ${ }^{1}$	-	AF262007 ${ }^{1}$	-
Chlorocardium rodiei (R. H. Schomb.) Rohwer, H. G. Richt. \& van der Werff	Guyana, Demerara, Mabura Hill	Chanderbali 246 (MO)	AF268706	AF268802	-	AF268245	-	AF272258
Chlorocardium venenosum (Kosterm. \& Pinkley.) Rohwer, H. G. Richt. \& van der Werff	Peru, Loreto, Iquitos	Vásquez 25236 (MO)	AF268707	AF268801	AF268840	-	-	AF272259
Cinnamomum camphora (L.) Presl.	Missouri BG	Chanderbali 322 (MO)	AF129020 ${ }^{3}$	AF129048 ${ }^{1}$	AF 129021^{1}	AF129019 ${ }^{1}$	-	AF272260
Cinnamomum chavarrinum (Hammel) Kosterm.	Costa Rica	Gomez-Laurito s.n. (J. Rohwer sequence)	-	-	-	-	-	AF272261 ${ }^{2}$
Cinnamomum cinnamomifolium (HBK) Kosterm.	Ecuador	Thomsen 8942 (AAU) (J. Rohwer sequence)	-	-	-	-	-	AF272262 ${ }^{2}$
Cinnamomum japonicum Siebold	Japan, Honshu, Kyoto	Yasuda 1351 (MO)	AF268708 ${ }^{3}$	AF268782	-	-	-	AF272263
Cinnamomum oleifolium (Mez) Kosterm.	Brazil, Minas Gerais	Lorea-Hernandez 5582 (MO)	-	-	-	-	-	AF272264
Cinnamomum quadrangulum (Meisn.) Kosterm.	Brazil, Minas Gerais	Lorea-Hernandez 5585 (MO)	-	AF268781	-	-	-	AF272265
Cinnamomum sp.	Vietnam, Lao Cai	van der Werff 14396 (MO)	-	AF268783	-	-	AF270473	AF272266
Cinnamomum verum Presl.	India, Kumbhave, Dapoli	Godbole 45108 (MO)	AF268709	AF268784	-	-	-	AF272267
Cryptocarya chinensis (Hance) Hemsl.	Asia	K. Ueda sequence	AF268710 ${ }^{3}$	-	-	-	-	-

Table 1. Continued.

Taxon	Provenance	Voucher	Genbank accession numbers					
			$t r n \mathrm{~L}-t r n \mathrm{~F}$	$p s b A-t r n \mathrm{H}$	$t r n \mathrm{~T}-\operatorname{trn} \mathrm{L}$	rpl16	26 S	ITS/5.8S
Cryptocarya rhodosperma Hy land	Australia, Queensland	Gray 7556 (QRS)	AF268711	AF268817	-	-	AF270474	-
Cryptocarya sclerophylla Hyland	Brisbane City Botanic Garden	Schwarzbach s.n. (voucher destroyed)	AF268712	AF268818	-	-	-	-
Cryptocarya thouvenotii (Danguy) Kosterm.	Madagascar, Toliara	van der Werff 12723 (MO)	AF232035 ${ }^{1}$	AF261997 ${ }^{1}$	AF233606 ${ }^{1}$	AF232745 ${ }^{1}$	AF262008 ${ }^{1}$	-
Dehaasia incrassata (Jack) Kosterm.	Philippines, Palawan, Taytay	Soejarto 7693 (MO)	-	-	-	-	-	AF272268
Dicypellium caryophyllaceum (Mart.) Nees	Brazil, Para	Pires 16756 (HBG)	-	-	-	-	-	AF272269
Dicypellium manausense W . Rodr.	Brazil, Amazonas, Manaus	Assunção 749 (INPA)	AF268713	AF268775	AF268830	-	-	AF272270
Endiandra microneura C. White	Australia, Queensland	Schulman s.n. (QRS)	AF268714		-	-	AF270475	-
Endlicheria chalisea Chanderbali	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 252 (MO)	AF268715	AF268756	AF268829	-	-	AF272271
Endlicheria citriodora van der Werff	Peru, Loreto, Iquitos	Vasquez 25231 (MO)	AF268716	AF268757	-	-	-	AF272272
Endlicheria punctulata (Mez) C. K. Allen	French Guiana, Tumac Humac	de Granville 1448 (MO)	-	-	-	-	-	AF272273
Endlicheria reflectens (Nees) Mez	Guyana, Essequibo, Rupununi	Chanderbali 208 (MO)	AF268717	AF268758	AF268828	-	-	AF272274
Gen. \& sp. nov. aff. Mezilaurus	Peru, Loreto, Iquitos	Vásquez 25230 (MO)	AF268719	AF268803	AF268838	-	AF270483	-
Eusideroxylon zwageri Teijsmann \& Binnendijk	Borneo, Kalimantan	Laman 1275 (HUH)	AF268718	AF268820	-	AF268252	-	-
Hypodaphnis zenkeri (Engl.) Stapf	Gabon, Ogooue-Ivindo, Lopé-Okanda	McPherson 16184 (MO)	AF232036 ${ }^{1}$	AF261998 ${ }^{1}$	AF233607 ${ }^{1}$	AF232746 ${ }^{1}$	AF262009 ${ }^{1}$	-
Iteadaphne sp.	Vietnam, Lao Cai	van der Werff 14360 (MO)	AF268720	AF268786	AF268834	AF268241	-	AF272275
Kubitzkia mezii (Kosterm.) van der Werff	Guyana, Essequibo, Iwokrama	Chanderbali 249 (MO)	AF268721	AF268772	-	-	AF270476	AF272276
Laurus nobilis L.	Missouri BG	Chanderbali 327 (MO)	AF268722	AF268785	AF268835	-	-	AF272278
Licaria cannella (Meisn.) Kosterm.	Guyana, Demerara, Mabura Hill	Chanderbali 234 (MO)	AF268723	AF268773	-	-	-	AF272280
Licaria guianensis Aubl.	Brazil, Amazonas, Manaus	Vicentini 1238 (MO)	-	-	-	-	-	AF272281

Table 1. Continued.

Taxon	Provenance	Voucher	Genbank accession numbers					
			$t r n \mathrm{~L}-t r n \mathrm{~F}$	$p s b \mathrm{~A}-\mathrm{trn} \mathrm{H}$	$t r n \mathrm{~T}-t r n \mathrm{~L}$	rpl16	26S	ITS/5.8S
Licaria martiniana (Mez) Kosterm.	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 264 (MO)	-	-	-	-	-	AF272279
Licaria triandra (Sw.) Kosterm.	Fairchild Tropical Garden, Fl., U.S.A.	Qiu 90019 (NCU)	AF268724	AF268774	-	-	-	AF272282
Lindera benzoin (L.) Blume	Missouri BG	Chanderbali 324 (MO)	AF268725 ${ }^{3}$	AF268788	AF268833	-	-	AF272283
Lindera erythrocarpa Makino	Japan, Honshu, Kyoto	Yasuda 1353 (MO)	AF268726 ${ }^{3}$	-	-	-	-	AF272284
Lindera umbellata Thunb.	Japan, Honshu, Kyoto	Yasuda 1354 (MO)	AF268727 ${ }^{3}$	AF268789			-	AF272285
Litsea coreana Leveille	Japan, Honshu, Kyoto	$\text { Yasuda } 1356 \text { (MO) }$	AF268728 ${ }^{3}$	AF268791	-	-	AF262010 ${ }^{1}$	AF272286
cf. Litsea elongata (Nees) Benth. \& Hook. f. (Distributed to MO as Phoebe forrestii W. W. Sm.)	China, Yunnan, Kunming BG	Hyland 14912 (MO)	-	-	-	-	-	AF272277
Litsea glaucescens HBK	Mexico, Guerrero, Chichihualco	Lorea-Hernandez 5496 (MO)	AF129035 ${ }^{1}$	AF129063 ${ }^{1}$	AF129036 ${ }^{1}$	AF127266 ${ }^{1}$	-	-
Mezilaurus triunca van der Werff	Peru, Amazonas, Iquitos	Vásquez 25227 (MO)	AF268729	AF268804	AF268837	AF268246	-	AF272287
Mocinnodaphne cinnamomoidea Lorea-Hern.	Mexico, Guerrero, El Molste	Lorea-Hernandez 5536 (MO)	-	-	-	-	-	AF272288
Nectandra amazonum Nees	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 217 (MO)	-	-	-	-	-	AF272289
Nectandra coriacea (Sw.) Griseb.	U.S.A. Florida, Monroe County	Prinzie 125 (MO)	-	-	-	-	-	AF272290
Nectandra cuspidata Nees \& Mart.	Guyana, Essequibo, Kamarang	Chanderbali 279 (MO)	-	-	-	-	-	AF272291
Nectandra membranacea (Sw.) Griseb.	Brazil, Sao Paulo, Serra do Mar	Lorea-Hernandez 5596 (MO)	AF268730	AF268767	AF268825	AF268244	-	-
Nectandra psammophila Nees \& C. Mart.	Brazil, Sao Paulo, Serra do Mar	Lorea-Hernandez 5595 (MO)	-	-	-	-	-	AF272292
Nectandra purpurea (Ruiz \& Pav.) Mez	Peru, Cajamarca, San Ignacio	Campos et al. 3165 (MO)	-	-	-	-	-	AF272293
Nectandra salicifolia (HBK) Nees	Costa Rica	Gomez-Laurito s.n. (J. Rohwer sequence)	-	-	-	-	-	AF272294 ${ }^{2}$
Nectandra turbacensis (HBK) Nees	Puerto Rico, Rio Grande, El Verde	Taylor 11746 (MO)	AF012400 ${ }^{1}$	AF268768	AF268826	-	-	AF272295

Table 1. Continued.

Taxon	Provenance	Voucher	Genbank accession numbers					
			$t r n \mathrm{~L}-t r n \mathrm{~F}$	$p s b A-t r n \mathrm{H}$	$t r n \mathrm{~T}-t r n \mathrm{~L}$	rpl16	26 S	ITS/5.8S
Neocinnamomum mekongense (Hand.-Mazz) Kosterm.	China, Yunnan	Li Heng 8547 (MO)	AF268731	AF268806	AF268841	AF268249	AF270477	-
Neolitsea sericea (Blume) Koidz.	Japan, Honshu, Kyoto	Yasuda 1355 (MO)	AF268732 ${ }^{3}$		-	AF268243	AF270478	
Ocotea botrantha Rohwer	U. C. Riverside	Scora 99-1 (UCR)	AF268733	AF268776	-			AF272297
Ocotea bullata (Burchell) E. Mey.	South Africa, Natal, Skyline Arboretum	Abbot 6208 (MO)	AF268734	AF267778	-	-	-	AF272298
Ocotea ceanothifolia (Nees) Mez	Guyana, Demerara, Mabura Hill	Chanderbali 244 (MO)	-	-	-	-	-	AF272299
Ocotea foetens (Aiton) Baill.	Madeira, Porto Moniz	Maas 8642 (MO)		-	-	\%		AF272300
Ocotea grayi van der Werff	Madagascar, Toliara	van der Werff 12732 (MO)	AF268736		-	AF2327471	AF270479	AF272301
Ocotea guianensis Aubl.	Guyana, Demerara, Mabura Hill	Chanderbali 232 (MO)	AF268737	AF268762	-			AF272302
Ocotea helicterifolia (Meisn.) Hemsl.	Mexico, Oaxaca, Miahuatlan	Torres 11911 (MO)	-	-	-	-	-	AF272303
Ocotea heydeana (Mez \& Donn. Sm.) Bernardi	Honduras, Yoro, Pico Pijol	Evans 1760 (MO)	-	-	-	-	-	AF272304
Ocotea ikonyokpe van der Werff	Cameroon, SW Prov., Rumpi Hills	Thomas 10456 (MO)	-	-	-	-	-	AF272305
Ocotea insularis (Meisn.) Mez	Costa Rica, Puntarenas, Coco Is	Rojas 3682 (MO)	-	-	-	-	-	AF272306
Ocotea leucoxylon (Sw.) Laness.	Puerto Rico, San Jose	Taylor 11733 (MO)	AF12399 ${ }^{1}$	AF268763	-	-	-	
Ocotea malcomberi van der Werff	Madagascar, Toliara	van der Werff 12756 (MO)	-	AF268779	-	-	-	AF272307
Ocotea nigra Benoist	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 162 (MO)	-	-	-	-	-	AF272308
Ocotea odorifera (Vell.) Rohwer	Brazil, Minas Gerais, Parque Ecol. CEMIG	Lorea-Hernandez 5578 (MO)	AF268738	AF268762	-	-	-	AF272309
Ocotea pauciflora (Nees) Mez	Guyana, Demerara, Mabura Hill	Chanderbali 219 (MO)	-	AF268764	-	-	-	AF272310
Ocotea percoriacea (Mez) Kosterm.	Brazil, Goias, Fazenda Galheiro	Lorea-Hernandez 5584 (MO)	AF268739	-	-	-	-	AF272311
Ocotea pulchella Mart.	Brazil, Minas Gerais, Fazenda Caiera	Lorea-Hernandez 5575 (MO)	AF268740	-	-	-	-	AF262312

Table 1. Continued.

Taxon	Provenance	Voucher	Genbank accession numbers					
			$t r n \mathrm{~L}-t r n \mathrm{~F}$	$p s b \mathrm{~A}-\mathrm{trn} \mathrm{H}$	$t r n \mathrm{~T}-\operatorname{trn} \mathrm{L}$	$r p l 16$	26 S	ITS/5.8S
Ocotea quixos (Lam.) Kosterm.	Ecuador, Napo, Jatun Sacha	Neill 9487 (MO)	AF232037 ${ }^{1}$	AF261999 ${ }^{1}$	AF233608 ${ }^{1}$	-	AF262011 ${ }^{1}$	AF272313
Ocotea rhynchophylla (Meisn.) Mez	Guyana, Demerara, Mabura Hill	Chanderbali 220 (MO)	-	AF268766	-	-	-	AF272314
Ocotea schomburgkiana (Nees) Mez	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 286 (MO)	-	-	-	-	-	AF272315
Ocotea spixiana (Nees) Mez	Brazil, Minas Gerais, Parque Ecol. Tripui	Lorea-Hernandez 5574 (MO)	-	-	-	-	-	AF272316
Ocotea tomentella Sandwith	Guyana, Essequibo, Kamarang	Chanderbali 284 (MO)	AF268741	AF268765	-	-	-	AF272317
Ocotea tristis (Nees \& Mart.) Mez	Brazil, Minas Gerais, Parque Ecol. CEMIG	Lorea-Hernandez 5577 (MO)	AF268742	-	-	-	-	AF272318
Ocotea veraguensis (Meisn.) Mez	Nicaragua, Chontales	Stevens 24177 (MO)	-	-	-	-	-	AF272319
Paraia bracteata Rohwer, H. G. Richt. \& van der Werff	Brazil, Amazonas, Iquitos	Vicentini 1288 (MO)	AF268743	-	-	-	-	AF272320
Parasassafras confertiflora (Meisn.) Long	China, Yunnan, Lishui Co.	Li Heng 10030 (MO)	-	AF268790	-	AF268238	AF270480	AF272321
Persea americana Mill.	Missouri BG	Chanderbali 323 (MO)	AF268744	AF268794	-	-	-	AF272322
Persea caerulea (Ruiz \& Pav.) Mez	Peru, Amazonas	van der Werff 14744 (MO)	-	AF268795	-	-	-	AF272323
Persea lingue (Ruiz \& Pav.) Nees ex Kopp	Chile	Greissl 640-99 (MJG)	-	AF268796	AF268836	-	-	AF272324
Persea meridensis Kopp	Venezuela, Trujillo, Boconó	Cuello 943 (MO)	AF268745	AF267797	AF268836	-	-	AF272325
Persea sp.	Vietnam, Vinh Phuc	van der Werff 14071 (MO)	-	-	-	-	-	AF272326
Persea thunbergii Siebold \& Zucc.	Missouri BG	Chanderbali 328 (MO)	AF268746	AF268798	-	-	-	AF272327
Phoebe formosana (Hayata) Hayata	Bonn BG	Rohwer 156 (MJG) (J. Rohwer sequence)	-	-	-	-	-	AF272328 ${ }^{\text {2 }}$
Pleurothyrium cinereum van der Werff	Peru, San Martin, Riojas	van der Werff 15325 (MO)	AF268747	AF268769	-	-	-	AF272329
Pleurothyrium insigne van der Werff	Ecuador, Napo, Jatun Sacha	Neill 9033 (MO)	-	-	-	-	-	AF272330

Table 1. Continued.

Taxon	Provenance	Voucher	Genbank accession numbers					
			$t r n \mathrm{~L}-t r n \mathrm{~F}$	$p s b \mathrm{~A}-\mathrm{trn} \mathrm{H}$	$t r n \mathrm{~T}-t r n \mathrm{~L}$	rpl16	26 S	ITS/5.8S
Potameia micrantha van der Werff	Madagascar, Toamasina	van der Werff 12777 (MO)	AF268749	AF268815	-	-	AF270481	-
Potameia microphylla Kosterm.	Madagascar, Fianarantsoa	van der Werff 12655 (MO)	AF268750	AF268816	-	AF268250	-	-
Potoxylon melagangai (Symington) Kosterm.	Brunei, Tutong, Kampong Lamumin	Hyland 14969 (MO)	AF268748	AF268821	-	AF268250	-	-
Rhodostemonodaphne crenaticupula Madriñán	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 265 (MO)	AF268751	AF268759	-	-	-	AF272331
Rhodostemonodaphne praeclara (Sandwith) Madriñán	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 256 (MO)	AF268752	AF268760	AF268827	-	-	AF272332
Rhodostemonodaphne recurva van der Werff	Brazil, Amazonas, Manaus	Vicentini 653 (MO)	-	-	-	-	-	AF272333
Rhodostemonodaphne scandens Madriñán	Guyana, Essequibo, Iwokrama Reserve	Chanderbali 271 (MO)	-	-	-	-	-	AF272334
Sassafras albidum (Nutt.) Nees	Missouri BG	Chanderbali 325 (MO)	AF268753	AF268793	AF268832	AF268242	AF264140 ${ }^{\text {4 }}$	AF272335
Sassafras tzumu (Hemsl.) Hemsl	China, Hunan, Xining Co.	Luo Lin-bo 1242 (MO)			26832	,	AF2641\%	AF272336
Sextonia pubescens van der Werff	Peru, Loreto, Iquitos	Vásquez 25229 (MO)	AF232038 ${ }^{1}$	AF262000 ${ }^{1}$	AF233609 ${ }^{\text {1 }}$	AF232748 ${ }^{1}$	AF262012 ${ }^{1}$	AF268808
Sextonia rubra (Mez) van der Werff	Brazil, Amazonas, Manaus	Nascimento 574 (MO)	AF268754	AF268805	-	-	AF270482	-
Umbellularia californica (Hook. \& Arn.) Nutt.	Missouri BG	Chanderbali 326 (MO)	AF268755	AF268777	-	-	-	AF272337
Urbanodendron bahiense (Meisn.) Rohwer	Brazil, Rio de Janeiro	Martinelli 10019 (MO)	-	-	-	-	-	AF272338
Urbanodendron verrucosum (Nees) Mez	Brazil, Minas Gerais, Faz. Macedônea	$\begin{aligned} & \text { Braga s.n. (BHCB) } 19385 \\ & \text { (MO) } \end{aligned}$	-	-	-	-	-	AF272339
Gomortegaceae								
Gomortega nitida Ruiz and Pav.	Chile	Rodriguez 3070 (CONC)	AF012404 ${ }^{1}$	AF129053 ${ }^{\text {² }}$	-	AF127260 ${ }^{\text { }}$	AF262014 ${ }^{1}$	-
Hernandiaceae								
Gyrocarpus americanus Jacq.	Sri Lanka, Colombo BG	Chase 317 (NCU)	AF012398 ${ }^{1}$	AF129054 ${ }^{1}$	AF129025 ${ }^{1}$	AF127261 ${ }^{1}$	AF262001 ${ }^{1}$	-
Hernandia moerenhoutiana Guillem.	Australia, Brisbane, Mt. Cootha BG	not available	AF052198 ${ }^{1}$	AF129055 ${ }^{1}$	AF129026 ${ }^{1}$	AF130310 ${ }^{1}$	-	-

Table 1. Continued.

Taxon	Provenance	Voucher	Genbank accession numbers					
			$t r n \mathrm{~L}-t r n \mathrm{~F}$	$p s b A-t r n \mathrm{H}$	$t r n \mathrm{~T}-t r n \mathrm{~L}$	$r p l 16$	26 S	ITS/5.8S
Illigera luzonensis (Presl) Merr.	Munich BG	not available	AF052199 ${ }^{1}$	AF129057 ${ }^{1}$	AF129030 ${ }^{1}$	AF127264 ${ }^{1}$	AF262002 ${ }^{1}$	-
Sparrattenthelium wonotoboense Kosterm.	Munich BG	Munich BG 47/1311	AF053342 ${ }^{1}$	AF129070 ${ }^{1}$	AF129043 ${ }^{1}$	AF127262 ${ }^{1}$	-	-
Monimiaceae								
Hortonia floribunda Wight ex Arn.	Sri Lanka, Colombo BG	not available	AF040683 ${ }^{1}$	AF129071 ${ }^{1}$	AF129028 ${ }^{1}$	AF129027 ${ }^{1}$	AF264143 ${ }^{4}$	-
Monimia ovalifolia Thouars	La Reunion	Stasberg s.n. (REU)	AF054896 ${ }^{1}$	AF129065 ${ }^{1}$	AF129038 ${ }^{1}$	AF127269 ${ }^{1}$	AF246144 ${ }^{4}$	-
Palmeria scandens Muell.	Australia, New South Wales	Bradford 878 (MO)	AF052200 ${ }^{1}$	AF129067 ${ }^{1}$	AF129040 ${ }^{1}$	AF127270 ${ }^{1}$	AF2641424	-
Peumus boldus Molina	Edinburgh BG	Edinburgh BG 19870707	AF012403 ${ }^{1}$	AF129068 ${ }^{1}$	AF129041 ${ }^{1}$	AF127454 ${ }^{1}$	AF264141 ${ }^{4}$	-

DMSO was added and the PCR protocol described by Kuzoff et al. (1998) was followed. The $\operatorname{trnL} \mathrm{L} t \mathrm{r} \mathrm{F}$ and $t r n \mathrm{~T}-t r n \mathrm{~L}$ regions were amplified using primers designed by Taberlet et al. (1991). The $\operatorname{trnL} \mathrm{L} t \mathrm{r} \mathrm{F}$ spacer sequences begin near the 5^{\prime} end of the spacer and include 138 bp of the 5^{\prime} end of the tRNAPhe ($t r n \mathrm{~F}$) gene. The spacer between tRNA-Leu $(t r n \mathrm{~L})$ and $\mathrm{tRNA}-\mathrm{Thr}(t r n \mathrm{~T})$ aligns readily with other lauralean $\operatorname{trn} \mathrm{T}-\operatorname{trn} \mathrm{L}$ sequences produced by Renner (1999), but is difficult to align with the few available $\operatorname{trn} \mathrm{T}-\operatorname{trn} \mathrm{L}$ sequences in GenBank, the most similar of which are $\operatorname{trn} \mathrm{T}-\operatorname{trn} \mathrm{L}$ sequences from Dioscorea (48% similarity). The $p s b \mathrm{~A}-t r n \mathrm{H}$ spacer and $r p l 16$ intron were amplified using primers of Sang et al. (1997) and Asmussen (1999), respectively. The $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}$ sequences obtained for Lauraceae include the entire spacer region and overlap by about 40 base pairs with the 3^{\prime} end of the $p s b$ A gene and 5' end of the $\operatorname{trn} \mathrm{H}$ gene of Helianthus annuus L. deposited in Genbank (X60428). The 5' region that includes the first two expansion domains of 26 S rDNA was amplified using a forward primer (D. Nickrent, pers. comm.) that anneals at ca. 70 nucleotide positions downstream from the 5^{\prime} end of the gene and the 641 R reverse primer of Kuzoff et al. (1998). To increase efficiency of PCR amplification of ITS, the few lauraceous sequences obtained using angiosperm-specific ITS A and ITS B primers (Blattner, 1999) were used to design a forward primer (5^{\prime}-ACCACCACCGGCAACCA- 3^{\prime}) that anneals at about 10 bp downstream of the 3^{\prime} end of 18 S . This primer (hereafter LAUR 1) appears to be specific to a large terminal clade in Lauraceae that includes the tribes Perseeae and Laureae and their sister group. In most cases it was possible to amplify the entire ITS region using LAUR 1 and ITS B, but for some poor-quality templates it was necessary to amplify the region in sections (ITS1 \& ITS2) by combining the appropriate universal primers of White et al. (1990) with LAUR 1 and ITS B. The ITS/5.8S sequences produced include all but the first ca. 10 bp of ITS 1 and the entire ITS 2 and 5.8 S regions. Rarely, only ITS 1 or ITS 2 was obtained.

PCR products were purified following the protocol provided by QIAquick gel extraction kits (QIAGEN) and sequenced using the dye terminator cycle sequencing protocol (Applied Biosystems). Sequence reactions were analyzed on ABI 373 or ABI 377 automated sequencers (University of Mis-souri-Columbia DNA Core Sequencing Facility and University of Missouri-St. Louis D. E. Lee and Family Sequencing Facility). Except for the psbA$t r n \mathrm{H}$ region, which could only be sequenced from the 5^{\prime} end, both strands of DNA were read and
consensus sequences generated using Sequencher vers. 3.1 (Gene Codes Corp., 1998). Sequences were manually aligned using the sequence editing facilities of Seqpup VERSION 0.6 (D. Gilbert, Indiana University, Bloomington, 1996). Sequence alignment was relatively straightforward in Lauraceae. However, the first 290 bp of the $\operatorname{trn} \mathrm{T}-\operatorname{trn} \mathrm{L}$ spacer were removed from analysis because of alignment difficulties among basal Lauraceae and outgroup families. Alignment difficulties with the outgroup were also encountered in the 3^{\prime} half of the $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}$ spacer. However, unlike $\operatorname{trnT}-\operatorname{trn} \mathrm{L}$ sequences, $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}$ provided several informative characters within Lauraceae and instead of removing it entirely, outgroup sequences were truncated after alignment became ambiguous (ca. position 300).

PHYLOGENETIC ANALYSES

Initial analyses of the individual data sets were conducted as heuristic searches for most parsimonious trees with 10 random taxon additions and TBR branch swapping using PAUP* version 4.0b4 (Swofford, 1998). Both the MULPARS and COLLAPSE options were in effect, but the STEEPEST DESCENT option was not employed. Characters were assumed to be unordered (i.e., Fitch parsimony), equally weighted, and gaps were treated as missing data. Parsimony uninformative characters were excluded. Bootstrap analyses (Felsenstein, 1985) with 500 replications were performed with the above heuristic search settings but with MAXTREES set to 100 . Since these initial searches showed no strongly supported conflict, i.e., alternative clades supported by $>70 \%$ bootstrap values (Hillis \& Bull, 1993), and P-values from partitionhomogeneity tests ranged from 1.0 to 0.6 (strongly indicating congruence), three matrices were compiled for further analyses. Matrix I combined 86 species that were sequenced for the $\operatorname{trnL}-\operatorname{trn} \mathrm{F}$ and
 $p s b \mathrm{~A}-t r n \mathrm{H}, \operatorname{trn\mathrm {T}}-\operatorname{trn} \mathrm{L}, r p l 16$, and 26 S sequences for 42 taxa representing major lineages identified by analyses of matrix I to further investigate basal relationships. Matrix III included 94 ITS sequences from representatives of a large terminal clade that was poorly resolved by sequence variation in matrix I. The only mutation in matrix I that provided ge-neric-level information in this terminal clade, a 16bp repeat in $t r n \mathrm{~L}-t r n \mathrm{~F}$, was included in matrix III. Analyses of all three matrices were conducted as above with length mutations (insertions and deletions) introduced as binary characters of equal weight. In addition, minimum evolution topologies
were calculated for the ITS data set using log determinant (LogDet) and maximum likelihood estimates of genetic distances. Maximum likelihood distances were calculated using the Hasegawa-Kishino-Yano (1985) model with rate heterogeneity among sites (HKY-Г).

MOLECULAR CLOCK ANALYSES

In order to add a temporal dimension to the phylogenetic estimate, divergence times for major branches were estimated. Due to the computational demands of maximum likelihood calculations and because it was not necessary to obtain divergence times for all nodes, likelihood scores were obtained from parsimony-based topologies that were reduced to exemplars of major clades. ITS/5.8S sequences were used for terminal, and the cpDNA and 26S sequences for basal lineages.

Likelihood scores were calculated under the Hasegawa-Kishino-Yano (1985) model with rate heterogeneity among sites, and values obtained with and without a clock constraint compared for significance using a χ^{2} test $\left[\chi^{2}=2\left(\log L_{\text {clock }}-\log \right.\right.$ $\mathrm{L}_{\text {nonclock }}$; d.f. $=$ number of taxa -2]. For each internal node, HKY $-\Gamma$ distances (branch lengths) to the tip were computed by PAUP* with the clock constraint enforced. These values represent the number of substitutions per site accumulated along each daughter lineage, and were either divided by time to determine substitution rates, or divided by estimated rates to obtain divergence times. Overlap in taxon sample between terminal and basal topologies allowed use of divergence times estimated in one to calibrate substitution rates and calculate divergence times in the other. Standard deviations of divergence times were estimated as follows. First, standard deviations of HKY-Г distances were calculated using a formula derived from the relationship $S=N p$, where S is the number of nucleotide substitutions, N is the total number of nucleotide positions in a sequence, and p is the proportion of nucleotides substituted (HKY-Г distance from node to branch tips). Since the standard deviation of S is the square root of $\mathrm{Np}(1-\mathrm{p})$, or $\mathrm{SD}(\mathrm{S})=$ $\operatorname{sqrt}\left(\mathrm{N}_{\mathrm{p}}[1-\mathrm{p}]\right)$, the standard deviation of p is $\mathrm{SD}(\mathrm{S})$ divided by N , or $\mathrm{SD}(\mathrm{p})=\operatorname{sqrt}(\mathrm{p}[1-\mathrm{p}] / \mathrm{N})$. This value is calculated for each divergence of interest and divided by substitution rate to obtain the standard deviation of divergence times.

Results

PHYLOGENETIC ANALYSES

Sequence variation in chloroplast markers and partial 26 S sequences was almost limited to basal

Table 2. Characteristics and comparisons of phylogenetic information provided by matrices analyzed in this study.
 and rpl16 of cpDNA with 26 S rDNA sequences; Matrix III is based on ITS rDNA sequences.

Matrices	Aligned length	Number of representatives of:		Parsimony-informative substitutions among:	
		Lauraceae	Perseeae \& Laureae	Lauraceae	Perseeae \& Laureae
$t r n \mathrm{~L}-t r n \mathrm{~F}$	510	76	48	103	7
$p s b$-trn H	616	75	48	135	35
$t r n \mathrm{~T}-t r n \mathrm{~L}$	530	33	19	105	12
rpl16	1049	24	10	103	9
265	592	22	8	77	11
Matrix I	1126	77	48	238	42
Matrix II	3297	42	4	470	n/a
Matrix III	780	94	90	n/a	199

branches in Lauraceae with very little and often no variation among members of tribes Perseeae and Laureae (sensu van der Werff \& Richter, 1996). The trnL-trn F matrix included 510 aligned positions and yielded 103 informative substitutions within Lauraceae, but only seven of these were informative among Perseeae and Laureae. Similarly, of 616 aligned positions in the psbA-trnH matrix, 135 substitutions were parsimony informative within Lauraceae and 35 among Perseeae and Laureae. This trend was also found in other chloroplast loci and partial 26 S sequences. Only ITS showed substantial variation within Perseeae and Laureae. Characteristics of individual genetic markers and combined data sets are summarized in Table 2.

Combined $t r n \mathrm{~L}-t r n \mathrm{~F}$ and $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}$ matrix (matrix I) included 1126 aligned positions of which 277 were informative. Four indels from $t r n \mathrm{~L}-\mathrm{trn} \mathrm{F}$ were added as binary characters. Three of these supported a clade comprised of Beilschmiedia, Cryptocarya, Endiandra, and Potameia, and the fourth is a 16 -base pair repeat found in several neotropical genera of Perseeae and Umbellularia of Laureae. Parsimony analyses of matrix I surpassed memory limitations in the first addition replicate, and 29,000 equally parsimonious topologies were retained after 24 hours of branch swapping ($\mathrm{L}=$ $796, \mathrm{CI}=0.74, \mathrm{RI}=0.89)$. The strict consensus topology (Fig. 1) shows two well-supported clades in Lauraceae. One of these includes members of Cryptocaryeae (sensu van der Werff \& Richter, 1996), with Hypodaphnis tenuously placed as its sister group. The second major clade is unequally divided into a small clade of South American genera (hereafter Chlorocardium-Mezilaurus clade) and a large terminal clade comprised of representatives of Laureae and Perseeae (sensu van der Werff \& Richter, 1996). This Perseeae-Laureae
clade is essentially unresolved but there is some support for a clade including representatives of Persea and Alseodaphne, a large generic complex centered around Ocotea, and strong support for a clade including all Asian members of Cinnamomum. Furthermore, a clade uniting most neotropical genera (Aniba, Endlicheria, Kubitzkia, Licaria, Nectandra, Pleurothyrium, and Rhodostemonodaphne) with neotropical (but not paleotropical) species of Ocotea and Californian Umbellularia is recovered in all trees but does not receive strong support. All members of this clade, except O. leucoxylon (Sw.) Laness., have the $16-\mathrm{bp}$ repeat mentioned above. Caryodaphnopsis, Cassytha, and Neocinnamomum constitute a clade in all trees but this association does not receive more than 50% bootstrap support, and neither does its position as the sister group of the second major infrafamilial group.

Matrix II included 3304 characters, of which 684 were parsimony-informative substitutions and 7 were binary-coded length mutations. Parsimony analysis converged on a single island of 2646 equal length trees $(\mathrm{L}=2171, \mathrm{CI}=0.71, \mathrm{RI}=0.72)$, the majority rule consensus of which is shown in Figure 2. The topology is mostly congruent with that provided by matrix I, differing mainly in that Hypodaphnis occupies a fairly well supported position (found in 81% of the bootstrap replicates) sister to the rest of the family. The placement of Caryodaphnopsis, Cassytha, and Neocinnamomum in the second main clade receives very strong (98%) bootstrap support, and relationships within the Chlorocardium-Mezilaurus clade are altered slightly.

Matrix III, based mainly on ITS sequences, included 259 parsimony-informative substitutions and 19 length mutations that could be unambiguously coded. Parsimony analysis found a single is-

Annals of the
Missouri Botanical Garden

 cpDNA sequences). Numbers above branches indicate bootstrap support. The vertical bar through the branch supporting the terminal clade indicates a 16 -bp repeat in the $\operatorname{trn} \mathrm{L}$ - $\operatorname{tr} \mathrm{F}$ F intergenic spacer that unites taxa therein.

Figure 2. Annotated 50% majority rule tree resulting from parsimony analysis of matrix II $(\operatorname{trn} \mathrm{L}-\operatorname{trn} \mathrm{F}, \operatorname{psbA}-\operatorname{trn} \mathrm{H}$, $t r n \mathrm{~T}-t r n \mathrm{~L}, r p l 16$, and 26 S sequences). Majority rule percentages are indicated above, and bootstrap values $>50 \%$ below, branches. Main clades and significant morphological characters are indicated. Geographic regions represented by each species of Lauraceae are given: $\mathrm{AF}=\mathrm{Africa}, \mathrm{AS}=\mathrm{Asia}, \mathrm{AU}=$ Australia, $\mathrm{BO}=$ Borneo, $\mathrm{CA}=$ Central America, MA $=$ Madagascar, ME $=$ Mediterranean, and SA $=$ South America.

Figure 3. Adams consensus of 567 equally parsimonious trees obtained from unconstrained analysis of matrix III (ITS sequences). Numbers above branches indicate bootstrap support, and vertical bars to the right circumscribe main clades. Cinnamom. $=$ Cinnamomum, Mocinnodaph. $=$ Mocinnodaphne, and Rhodostem. $=$ Rhodostemonodaphne.
land of 567 equal length trees ($\mathrm{L}=1050, \mathrm{CI}=$ $0.44, \mathrm{RI}=0.75$). The Adams consensus topology (Fig. 3) indicates that Perseeae sensu van der Werff and Richter (1996) are paraphyletic, and that most
of the topological instability exists among members of Cinnamomum. Sassafras was placed between Laureae and a paraphyletic Cinnamomum in all trees. This reconstruction does not receive strong

— 5 changes

Figure 4. One of 126 equally parsimonious trees obtained with monophyly of the Cinnamomum group (Cinnamomum, Aiouea p.p., Mocinnodaphne, and Ocotea p.p.) and Laureae enforced (thick vertical bars) as topological constraints. Bootstrap support values are indicated above unconstrained branches. Annotated bars to the right indicate the distribution and inferred ancestry of clades.
bootstrap support, and constraining monophyly of a clade comprised of Cinnamomum and its allies (Aiouea p.p., Mocinnodaphne, Ocotea p.p.) required only one extra step while constraining monophyly of Laureae to include Sassafras added three extra steps to parsimony-based trees. One of 126 equally parsimonious trees $(\mathrm{L}=1054, \mathrm{CI}=0.44$, $\mathrm{RI}=$ 0.75) calculated with both topological constraints enforced is shown in Figure 4. Both minimum-evolution analyses recovered topologies that showed the same main clades found by parsimony analyses. Although Cinnamomum was again not monophyletic, minimum evolution placed Sassafras sister to remaining Laureae, albeit together with Cinnamomum camphora (L.) Presl. Differences between parsimony and minimum evolution reconstructions suggest that some instability in parsimony-based topologies can be attributed to characters shared between Sassafras and C. camphora. With C. camphora removed the number of trees resulting from unconstrained parsimony analyses is greatly reduced (to $36, \mathrm{~L}=1022 \mathrm{CI}=0.44, \mathrm{RI}=0.76$), but Sassafras is still placed between Laureae and paraphyletic Cinnamomum.

MOLECULAR CLOCK ANALYSES

A likelihood ratio test on the ITS data set reduced to 25 representatives of main lineages in higher Lauraceae (Fig. 5a) indicated that substitution was approximately clock-like. Log likelihood scores with (-2844.00) and without a clock constraint (-2827.85) were not significantly different ($\chi^{2}=32.30$, d.f. $=23, P>0.05$). Of molecular markers used to resolve basal relationships, only rpl16 did not reject the molecular clock $\left[\chi^{2}=2(2590.76-2582.73)=16.06\right.$; d.f. $=10, P>0.05]$, provided Neocinnamomum and Cassytha were removed from analysis (Fig. 5b). Results of two calibrations simulating alternative biogeographic scenarios are summarized in Table 3 , and those of our preferred calibration are depicted in Figure 5.

Discussion

The two-tiered taxon and molecular sampling adopted in this study provides a generally well sup-
ported generic-level phylogeny for Lauraceae. Data from chloroplast markers and partial $26 S$ sequences resolve main clades, while ITS provides novel resolution among members of Perseeae and Laureae (sensu van der Werff \& Richter, 1996). To provide a basis for subsequent biogeographic considerations, phylogenetic relationships among Lauraceae are first discussed.

PHYLOGENETIC RELATIONSHIPS

Several previously recognized taxonomic groups, albeit in different schemes, compare favorably with clades supported by our molecular data. Among these, Cryptocaryeae as circumscribed by van der Werff and Richter (1996), Laureae of most classifications (e.g., Kostermans, 1957; van der Werff \& Richter, 1996; Rohwer, 1993a), and Cinnamomeae in the sense of Kostermans (1957) are the largest. In addition, a generic grouping centered around Persea, informally recognized by Rohwer (1993a), herein receives considerable support. A fifth major generic grouping, the Chlorocardium-Mezilaurus clade, is comprised of taxa whose taxonomic positions have previously been uncertain. Outside of these main clades the position of a few small genera is unsettled.

Hypodaphnis and Cryptocaryeae. Monotypic Hypodaphnis, consisting of H. zenkeri (Engl.) Stapf from Central Africa, is the only member of Lauraceae with an inferior ovary, and the two analyses that investigated basal relationships in Lauraceae suggested different positions (compare Figs. 1 and 2). The $t r n \mathrm{~L}-t r n \mathrm{~F}$ and $p s b \mathrm{~A}-t r n \mathrm{H}$ data sets analyzed in matrix I weakly support a sister group relationship between Hypodaphnis and Cryptocaryeae (Fig. 1). Association with Cryptocaryeae is supported by irregular thyrsoid inflorescences (van der Werff \& Richter, 1996) and morphological similarity with Eusideroxylon and Potoxylon, two monotypic Indonesian genera that consistently place basally in Cryptocaryeae (Figs. 1, 2). Like Hypodaphnis, they have stamens with four collaterally arranged locelli, but their ovaries are only semi-inferior. However, the larger molecular sample (matrix II) places Hy podaphnis sister to remaining Lauraceae with mod-

Figure 5. Phylograms showing clock enforced HKY-Г distances on reduced parsimony-based topologies depicting terminal (5a) and basal (5b) clades in Lauraceae. Divergence times in Figure 5a are based on ITS and those in Figure 5 b on rpl16 sequences. The time scale below each phylogram reflects a calibration in which equivalent nodes (indicated by^{*}) in Figure 5a and Figure 5b are fixed at 90 million years. Node labels (a-f, x, z, and A-G) correspond to those listed in Table 3. The geographic distributions of terminal taxa are given: $\mathrm{AF}=\mathrm{Africa}, \mathrm{AS}=\mathrm{Asia}, \mathrm{BO}=$ Borneo, $\mathrm{CA}=$ Central America, $\mathrm{CI}=$ Canary Islands, $\mathrm{MA}=$ Madagascar, $\mathrm{MC}=$ Macaronesia, $\mathrm{NA}=$ North America, and SA $=$ South America.

Table 3. Clock enforced HKY-Г, distances accumulated after divergence events among terminal (Table 3a) and basal (Table 3b) lineages in Lauraceae, and estimates of divergence times simulating two biogeographic scenarios. HKY-Г, distances in Table 3a are obtained from ITS and those in Table 3b from rpl 16 sequences. Calibration 1 simulates West Gondwanan vicariance for the trans-Atlantic disjunction in the Ocotea complex; calibration 2 simulates Gondwanan origin for the Chlorocardium-Mezilaurus clade. Node labels are equivalent to those in Figure 5, and ages fixed for calibration purposes are underlined. $*=$ Equivalent nodes.

	HKY-	Calibration 1	Calibration 2
	distance from	time (Mya)	time (Mya)
Node	node to tip $\pm \mathrm{SD}$	$\pm \mathrm{SD}$	\pm SD

a. Terminal lineages in Lauraceae.			
a^{*}	0.09740 ± 0.0106	354 ± 30	$\underline{90}$
b	0.05715 ± 0.0083	171 ± 21	44 ± 7
c	0.04309 ± 0.0073	156 ± 20	40 ± 7
d	0.03793 ± 0.0068	138 ± 19	35 ± 6
e	0.02476 ± 0.0055	$\underline{90}$	23 ± 5
f	0.02175 ± 0.0052	79 ± 14	20 ± 5
x	0.01437 ± 0.0042	52 ± 12	13 ± 4
z	0.03499 ± 0.0066	127 ± 18	32 ± 6

b. Basal lineages in Lauraceae.

A	0.03886 ± 0.0059	682 ± 105	174 ± 32
B	0.03513 ± 0.0056	620 ± 100	158 ± 31
C	0.02683 ± 0.0050	473 ± 88	120 ± 27
D	0.02038 ± 0.0044	360 ± 77	91 ± 20
E	0.03162 ± 0.0054	558 ± 95	142 ± 24
F	0.00977 ± 0.0058	172 ± 54	44 ± 14
G^{*}	0.02006 ± 0.0043	$\underline{354}$	$\underline{90}$

erately high support (Fig. 2). This peripheral position for Hypodaphnis is also indicated by mat K sequences, albeit with $<50 \%$ bootstrap support (Rohwer, 2000), but difficult to support with morphology. Any outgroup comparison is stymied by the unsettled sister family relationship of Lauraceae. Hernandiaceae, with inferior ovaries, are favored over Monimiaceae with 100% bootstrap support by morphology (Doyle \& Endress, 2000), but molecular data have been ambiguous (Renner, 1999; Renner \& Chanderbali, 2000; Qiu et al., 1999). A Hernandiaceae-Lauraceae clade receives modest support here (Figs. 1, 2), and when Hypodaphnis lies sister to remaining Lauraceae (Fig. 2), inferior ovaries are a potential synapomorphy for the two families. However, given the non-inferior state of all other Lauraceae, independent gain, required also by the topology in Figure 1, is equally parsimonious.
Cryptocaryeae sensu stricto. Support for the clade comprised of Aspidostemon, Beilschmiedia, Crypto-
carya, Endiandra, Eusideroxylon, Potameia, and Potoxylon is considerable in both analyses investigating basal relationships in Lauraceae (Figs. 1, 2). Anatomical features stress isolation of Aspidostemon, Eusideroxylon, and Potoxylon more than their affinities (Richter, 1981), but close relationship with Cryptocarya has been suggested in recent morphology-based systems (e.g., Rohwer, 1993a; van der Werff \& Richter, 1996). With Cryptocarya they share a deeply urceolate floral hypanthium that develops into deep cupules enclosing the drupe except for a small terminal orifice. Unlike the previous genera, in Beilschmiedia and Endian$d r a$ the hypanthium is shallow and a cupule never develops, while the fruits of Potameia are either free or seated in a small discoid structure. Kostermans (1957), stressing the degree of cupule development in his scheme for Lauraceae, placed Beilschmiedia, Endiandra, and Potameia with Persea (also non-cupulate, but of the distal PerseeaeLaureae clade). Close relationship with Cryptocarya has since gained support from wood and bark anatomy (Richter, 1981), inflorescence morphology (van der Werff \& Richter, 1996), embryology (Heo et al., 1998), and molecular data (Rohwer, 2000; herein).

The topology in Cryptocaryeae reveals a trend toward increased ovary exsertion, in both flower and fruit. Eusideroxylon and Potoxylon, with semiinferior ovaries, lie sister to genera with superior ovaries. Aspidostemon branches next (Fig. 2), and Cryptocarya lies sister to the non-cupulate clade of Beilschmiedia, Endiandra, and Potameia (Figs. 1, 2). Endiandra and Potameia have a reduced number of floral parts relative to Beilschmiedia, but whether they nest within the latter (Figs. 1, 2) is not well resolved.

Other genera that have been allied to members of Cryptocaryeae but not herein are either monotypic or oligotypic. Their generic status is also controversial (e.g., Rohwer, 1993a). Dahlgrenodendron, with only D. natalensis (J. H. Ross) J. J. M. van der Merwe \& A. E. van Wyk, has distinctive pollen ornamentation (van der Merwe et al., 1988) but is otherwise not different from Cryptocarya (Rohwer, 1993a). Triadodaphne, with three species, is tentatively distinguished from Endiandra by its unequal perianth whorls and deeper hypanthium (Kostermans, 1993). In Hexapora, comprised of H. curtisii Hook. f., the outer six stamens are extrorse, and the third and fourth whorls staminodial, but otherwise the genus is similar to Beilschmiedia. Brassiodendron, with only B. fragrans C. K. Allen, also has only six fertile stamens, and according to Kostermans (1957) and Hyland (1989) should be included in Endiandra.

Cassytha, Caryodaphnopsis, and Neocinnamomum. These three genera are among the most enigmatic of the family. In our analyses of matrix I, they constitute a statistically uncorroborated clade (with $<50 \%$ bootstrap support) that lies sister to the rest of the family, also without support (Fig. 1). This alliance is disbanded by additional molecular characters provided by matrix II, but their position in this part of the tree receives strong support (Fig. 2). Some elements of Cassytha's position may be due to long branch effects in our analyses.

The herbaceous parasitic twiner, Cassytha, is the sole exception to the arborescence typical of Lauraceae, and it has usually been placed in a separate subfamily (e.g., Kostermans, 1957; van der Werff \& Richter, 1996). Subfamilial position is supported by ab initio cellular endosperm Cassytha shares with Hernandiaceae, Monimiaceae, and other Laurales (Heo \& Tobe, 1995; Heo et al., 1998). Such endosperm formation is also reported from Umbellularia (Bambacioni-Mezzetti, 1941), but nuclear endosperm is found in all other Lauraceae that have been examined, including Hypodaphnis (Heo et al., 1998). In Rohwer's matK study Cassytha was placed between Hypodaphnis and the rest of the family, but without strong statistical support. Here, close relationship with Neocinnamomum receives very high statistical support from matrix II (Fig. 2), but morphological synapomorphies for these two genera are not known. Instead, Cassytha and Neocinnamomum have the longest branches in the topology, differing from each other by over 279 mutations (uncorrected " p " distances, uninformative characters included), while the branch uniting them is supported by comparatively few (66) mutations. With Neocinnamomum removed from the analysis, Cassytha and Caryodaphnopsis constitute a clade (cladogram not shown). In both genera the outer whorl of tepals is strongly reduced, but this condition appears elsewhere in Lauraceae (e.g., Persea), and other characters to support a CassythaCaryodaphnopsis clade are unknown. However, with both Neocinnamomum and Caryodaphnopsis removed, Cassytha still lies sister to the rest of the family. If long branches cannot attract in their mutual absence (Sidall \& Whiting, 1999), this finding would imply that Cassytha is correctly placed in this general part of the phylogeny. Alternatively, long branched taxa, such as Cassytha, experience multiple substitutions that erode genealogical signal, randomize character states with respect to true relatives, and lead to chance convergence on the molecular states of distant lineages, all qualities
that can mislead phylogenetic estimates (Felsenstein, 1978; Lyons-Weiler \& Hoelzer, 1997).

Caryodaphnopsis and Neocinnamomum are morphologically similar, sharing triplinerved venation and four-locular anthers with the locelli arranged in a shallow arc (sometimes two-locular in Caryodaphnopsis, in a horizontal row in Neocinnamomum delavayi (Lecomte) H. Liu). In contrast, Caryodaphnopsis has opposite leaves, a perianth of strongly unequal tepals, and lacks a cupule, while Neocinnamomum has alternate (spiral) leaves, subequal tepals, and a shallow cupule with persistent tepals. Close relationship between Neocinnamomum and Cinnamomum (Kostermans, 1974a), and between Caryodaphnopsis and Persea (Kostermans, 1974b; Rohwer, 1993a), can be ruled out, but the relationships of these two genera are not clearly indicated by our data. They either constitute a clade, albeit with Cassytha (Fig. 1), or Caryodaphnopsis lies between a Neocinnamomum-Cassytha clade and the rest of the family (Fig. 2). With Cassytha excluded, either Caryodaphnopsis or Neocinnamomum lies sister to the rest of the family (cladograms not shown). Neocinnamomum was not included in Rohwer's matK study, and Caryodaphnopsis was placed as it is in Figure 2. Anatomical affinities of Neocinnamomum and Caryodaphnopsis with Chlorocardium and Cryptocaryeae, respectively (Richter, 1981), are consistent with their relatively basal position in the family.

Chlorocardium-Mezilaurus clade. The clade comprised of Anaueria, Chlorocardium, Mezilaurus, Sextonia, and a novel taxon (Gen. \& sp. nov.) receives 99% and 96% bootstrap support from matrix I and II, respectively (Fig. 1). It is one of the more intriguing clades in the family. Close relationship between Anaueria and Mezilaurus has been suggested (Richter, 1981; Rohwer, 1993a), but the possibility that all these taxa constitute a clade of their own has never been considered on morphological grounds. So far, characters uniting them have only been provided by molecular data. A clade comprised of Chlorocardium and Mezilaurus (plus Williamodendron, a small genus of 3 species differing from Mezilaurus primarily in the number of locelli; not herein) received moderate support from matK sequences, but Rohwer (2000) questioned a close relationship citing anatomical and floral differences. Here, Chlorocardium and Mezilaurus place in separate subclades that can be characterized by phyllotaxy.

The subclade of Gen. \& sp. nov., Mezilaurus, and Sextonia accommodates taxa with obovate, coriaceous leaves borne in terminal clusters (Fig. 2).

Unlike most other Lauraceae with terminally clustered leaves, in these taxa the clusters are not separated by seasonal growth spurts. Instead, growth is continuous, and apparently quite slow, resulting in a continuous spiral of leaf scars. This growth pattern is rare but not unique to this clade; such leaf clusters are at least also known in Alseodaphne, of the Persea group (below). In the other subclade, Anaueria and Chlorocardium share opposite leaves (Fig. 2). This subclade receives considerable molecular support, but both genera find morphological allies within the other subclade. Anaueria is anatomically more similar to Mezilaurus (Richter, 1981), with which it also shares glandless flowers. Chlorocardium is unique with its xylem of coronated vessel elements (Kostermans et al., 1969), and its large rotate flowers with an increased number of stamens (to 20) are unmatched in the clade. However, its papillose, tongue-shaped stamens, all with a pair of small basal glands, are much like those found in the second and third staminal whorls of Sextonia.

All South American genera that do not clearly assign to generic groups based on wood and bark anatomy or inflorescence structure (van der Werff \& Richter, 1996) place in a Chlorocardium-Mezilaurus clade. Monotypic Costa Rican Povedadaphne (not examined here) was considered close to Mezilaurus by Rohwer (1993a), but his matK data (Rohwer, 2000) suggested a place with genera here placed in Cinnamomeae (below) where it is morphologically close to the Ocotea complex. No other members of the Chlorocardium-Mezilaurus clade are suspected on morphological grounds.

Monophyletic Groups in the Perseeae-Laureae clade. The large terminal clade that accounts for most of the modern generic and species diversity of Lauraceae includes Laureae of most classification systems and van der Werff and Richter's (1996) Perseeae. The present resolution does not support the dichotomy implied by these tribal concepts (Fig. 3). Instead, five genera of Perseeae (Persea group) lie sister to a clade comprised of Laureae and remaining Perseeae. The generic composition of the latter group compares favorably with Kostermans' (1957) Cinnamomeae (Fig. 3). Possible resolution of a Perseeae-Laureae clade into a small Persea group and a large Laureae-Cinnamomeae clade was indicated by matK sequences (Rohwer, 2000), but topology was unstable and lacked statistical support. Support is stronger here with the Persea group and Laureae-Cinnamomeae clade receiving 89% and 93% bootstrap support, respectively (Figs. 3, 4). A close Laureae-Cinnamomeae
relationship has never been formally recognized. Only Kostermans (1957) placed these two tribes in close proximity in his graphical scheme for Lauraceae, conceivably to express his observation that fleshy hemispherical cupules are typical of, and restricted to, genera therein. Elsewhere in Lauraceae hemispherical, but rather woody, cupules also occur in Chlorocardium and Sextonia, both included in Cinnamomeae by Kostermans (as Ocotea), but of the Chlorocardium-Mezilaurus clade herein.

Persea group. This clade (Fig. 3), including Alseodaphne, Apollonias, Dehaasia, Persea, and Phoe$b e$, accommodates all non-cupulate genera of van der Werff and Richter's (1996) Perseeae. It is Rohwer's (1993a) Persea group, without Caryodaphnopsis. Nothaphoebe was not investigated herein but is morphologically close to Alseodaphne.

Generic delimitation in the Persea group has been controversial, and all genera with four-locular anthers have at some point been placed in synonymy under Persea (e.g., Bentham, 1880; Kostermans, 1957). Apollonias and Dehaasia have always been segregated on the basis of their two-locular anthers, but the generic importance of this character and its use to delimit Apollonias from Phoebe and Dehaasia from Alseodaphne is questionable (Rohwer et al., 1991; Rohwer, 1993a; van der Werff, in press). Other generic characters, including relative tepal sizes, whether tepals persist in fruit, and if so, manner of persistence, have also been questioned (van der Werff, 1989; Rohwer et al., 1991). Our present sampling does not adequately address these issues. Only Persea is represented by more than one species. Asian Persea (subg. Machilus) places with paleotropical Alseodaphne, Apollonias, Dehaasia, and Phoebe, while American Persea (subg. Eriodaphne and subg. Persea) constitutes a separate clade (Fig. 3), but the implication that Persea is not monophyletic has little support. Detailed morphological and molecular studies are needed to resolve relationships within this large group of ca. 400 species, most of which are found in tropical Asia.

Laureae. Close relationship among Actinodaphne, Adenodaphne, Laurus, Lindera, Litsea, Neolitsea, Parasassafras, and Sassafras has been recognized in almost all classifications of Lauraceae. All are dioecious and most have umbellate inflorescences subtended by involucral bracts. In this study, parsimony analyses place Sassafras between well-supported core Laureae and remaining genera (Fig. 3). However, membership in Laureae was found by minimum evolution analyses, and parsimony-based trees in which Sassafras lies sister to core Laureae
(Fig. 4) are just three steps longer. Introrsely positioned locelli in all staminal whorls support a place for Sassafras in Laureae. Elsewhere in Lauraceae introrsely positioned locelli are restricted to the outer two staminal whorls. Another potential synapomorphy is the dioecious breeding system shown by Sassafras and core Laureae. In Lauraceae, dioecy is otherwise only found in basally positioned Hypodaphnis (Fig. 1) and a distal clade of Ocotea s. str., Endlicheria, and Rhodostemonodaphne (Fig. 3). Dodecadenia and Cinnadenia, not herein, should also place in Laureae on the basis of dioecy and introrse locelli.

Umbellularia is usually placed in Laureae because of its umbellate involucrate inflorescences (e.g., van der Werff \& Richter, 1996), but its flowers are bisexual and locelli of the innermost staminal whorl are extrorse, not introrse. A 16-bp repeat in $t r n \mathrm{~L}-\mathrm{trn} \mathrm{F}$ (Fig. 1) and ITS sequences (Figs. 3, 4) distance Umbellularia from Laureae and place it in the Ocotea complex (below).

Generic delimitation in Laureae is unsettled. Litsea alone accommodates ca. 400 of the approximately 700 species, and most generic limits are probably artificial (Rohwer, 1993a; Li \& Christophel, 2000). As with the Persea group, detailed systematic studies are needed to resolve natural lineages in Laureae.

Cinnamomeae. All remaining genera were previously placed in Cinnamomeae (sensu Kostermans, 1957), albeit together with Sassafras, Actinodaphne, and Neocinnamomum. With these three genera excluded, Cinnamomeae is van der Werff and Richter's (1996) Perseeae without the Persea group. Cinnamomeae are thus a sizeable subset of the Perseeae-Laureae clade (Fig. 3), accommodating all of its major neotropical genera (e.g., Aiouea, Aniba, Endlicheria, Licaria, Nectandra, Pleurothyrium, and Rhodostemonodaphne) as well as widespread Cinnamomum and Ocotea.

Cinnamomeae share hemispherical cupules (rarely poorly developed) with Laureae and retain the thyrsoid non-involucrate inflorescences of the Persea group. Thus, uniquely derived features are not obvious. Bootstrap support for Cinnamomeae reaches only 52% in unconstrained parsimony analyses (Fig. 3), but raised to 86% by enforcing monophyly of a generic alliance centered around Cinnamomum (Fig. 4).
Cinnamomum group. The delimitation of Cinnamomum is based on its nine stamens with fourlocular anthers and a fourth androecial whorl of well-developed staminodes provided with sagittate glandular apices. The present data nest two neo-
tropical genera in Cinnamomum. Monotypic Mocinnodaphne was described to recognize a reduction in number of staminal whorls (Lorea-Hernandez, 1995), and Aiouea p.p. [A. dubia (HBK) Mez and A. guianensis Aubl. herein] differs mainly in locelli number, both characters of traditional generic value. The finding that Ocotea ikonyokpe van der Werff, a recently described species from Cameroon, is placed with Cinnamomum is surprising. However, a leaf fragment from the holotype sheet (Thomas 10456, MO) was extracted, amplified, and sequenced only with other species of Ocotea. Furthermore, ITS1 and ITS2 regions of O. ikonyokpe were amplified and sequenced separately. Neither section is identical with accessions of Cinnamomum, and both support a place with Cinnamomum. In Africa, O. ikonyokpe shares (sub)opposite leaves with East African O. michelsonii Robyns \& Wilczek and O. usambarensis Engl. (not herein). All other African Ocotea have spirally arranged leaves (van der Werff, 1996). Interestingly, O. ikonyokpe associates with Asian Cinnamomum (mostly oppositeleaved) instead of mostly alternate-leaved neotropical Cinnamomum (Figs. 3, 4). The staminodes, relatively smaller than seen in Cinnamomum, and without sagittate apices (although glandular as in Cinnamomum), refer this Cameroon species to Ocotea, but leaf arrangement is perhaps an overlooked character here.

Neither molecular nor morphological synapomorphies readily appear for the Cinnamomum group (Cinnamomum, Aiouea p.p., Mocinnodaphne, and Ocotea p.p.), but enforcing monophyly adds only one step to parsimony-based trees (Fig. 4). Still, New and Old World species remain separate subclades in the constrained clade. This New WorldOld World dichotomy is also evident in wood and bark anatomy (Richter, 1981), and can be deduced from traditional placement of neotropical Cinnamomum in Phoebe (of the Persea group above) until transferred by Kostermans (1961). With over 350 species distributed from (sub)tropical Asia to the Neotropics, one African member, and a few representatives in Australia and the Pacific Islands (primarily Fiji), the Cinnamomum group is speciose and widespread.

Ocotea complex. The remaining genera of Cinnamomeae form a strongly supported clade within which members of Ocotea are widely dispersed (Figs. 3, 4). Finding that Umbellularia places here, and not in the Laureae, clarifies conflicting indications from floral morphology and inflorescence structure (discussed under Laureae, above). Apart from a few Old World species of Ocotea, the com-
plex is restricted to the New World and accounts for most of the generic and species diversity of Lauraceae in the Neotropics.

Clades resolved within the Ocotea complex can be circumscribed in geographic, and sometimes morphological, terms. Basal branches in the complex are occupied by Old World species of Ocotea, North American Umbellularia, and primarily Central American species groups in Nectandra and Ocotea. Two derived clades are centered in South America. In the more speciose, Nectandra s. str. and Pleurothyrium lie sister to a dioecious clade comprised of Endlicheria, Ocotea s. str., and Rhodostemonodaphne. In the second and less speciose South America-centered clade, Aniba, an assortment of Ocotea species, and mostly mono- to oligotypic genera associate with Licaria.

Old World Ocotea. Outside of the Neotropics, Ocotea is represented by O. foetens (Aiton) Baill. in Macaronesia, 7 species in mainland Africa, and about 30 species in Madagascar. In this study, South African O. bullata (Burch.) E. Mey. and 2 species from Madagascar, O. grayi van der Werff and O. malcomberi van der Werff, constitute a strongly supported clade. Ocotea foetens is almost indistinguishable from O. bullata, but surprisingly its place with Old World Ocotea receives $<50 \%$ bootstrap support (Figs. 3, 4). Morphological characters distancing Old World Ocotea from New World relatives do not readily appear. In the present reconstruction Old World Ocotea lie sister to the New World component of the Ocotea complex.

Nectandra coriacea species group, Nectandra s. str., and Pleurothyrium. Representatives of the Nectandra coriacea species group, N. coriacea (Sw.) Griseb., N. salicifolia (HBK) Nees, and N. purpurea (Ruiz \& Pav.) Mez, place distant from a clade in which a broad morphological representation of Nectandra s. str. pairs with Pleurothyrium (Figs. 3, 4). Close relationship between Nectandra s. str. and Pleurothyrium was also indicated by matK sequences (Rohwer, 2000). The two share relatively large rotate flowers with heavily papillose tepals and stamens, and relatively poorly developed staminodes. Nectandra s. str. and Pleurothyrium are centered in South America with ca. 100 and 40 species, respectively. The Central America-centered Nectandra coriacea species group (ca. 20 spp.) was perceived as accommodating the most primitive elements of Nectandra, retaining Ocotealike non-scalariform venation, tepal and stamen non-papillosity, distinct filaments, and a well-developed fourth androecial whorl of staminodes with glandular apices (Rohwer, 1993b; Rohwer \& Ku-
bitzki, 1993). A relatively basal position in the Ocotea complex is suggested by ITS sequences (Figs. $3,4)$.

Ocotea helicterifolia species group. The clade (Figs. 3, 4) comprised of Ocotea botrantha Rohwer, O. helicterifolia (Meisn.) Hemsl., and O. heydeana (Mez \& Donn. Sm.) Bernardi represents a diverse but cohesive assemblage of species in Ocotea. Core members are characterized by hirsute leaves and twigs, bisexual flowers with partially papillose tepals, glabrous or weakly papillose anthers with four pollen sacs arranged in two superimposed pairs, and well-developed staminodes (van der Werff, 1999). Close relationship with non-hirsute species with this general floral structure, i.e., the Ocotea heydeana species group, and with the Ocotea sinuata species group, which differs by more heavily papillose tepals and anthers (here represented by O. botrantha Rohwer) was anticipated by Rohwer (1991). With the Nectandra coriacea species group, and Umbellularia, the Ocotea helicterifolia species group shares well-developed staminodes with glandular apices, while their papillose anthers and tepals suggest an affinity with Nectandra s. str. and Pleurothyrium. Their place in the present phylogeny is consistent with this intermediate morphology. The group is distributed throughout Central America and numbers around 30 species.

Ocotea s. str., Endlicheria, and Rhodostemonodaphne. A clade comprised of all dioecious Ocotea sampled for this study and the only neotropical genera with this breeding system, Endlicheria and Rhodostemonodaphne, is found in all ITS-based trees. It receives low bootstrap support as a whole (55%), but much better (93%) support within the group above the branch separating Endlicheria punctulata (Mez) C. K. Allen and Ocotea paucifora (Nees) Mez from the rest (Fig. 3). As seen in Figure 4, E. punctulata and O. pauciflora appear to diverge early, shortening the branch supporting the entire clade, but this effect could also be obtained by reversals to ancestral molecular states along the branch uniting these two species.

Taxa placed here include the type species of Ocotea, O. guianensis Aubl., and represent several species groups recognizable among dioecious Ocotea (e.g., Rohwer, 1986). Since representatives of Endlicheria and Rhodostemonodaphne also sample a wide range of morphological variation within these moderately sized but heterogeneous genera, all approximately 300 dioecious species of the O cotea complex should place here. In this clade generic limits based on locelli arrangement and number are not supported. The Ocotea species form a
paraphyletic assemblage within which Rhodostemonodaphne and Endlicheria are nested (Figs. 3, 4). Rhodostemonodaphne has four-locular anthers like Ocotea, but the locelli are arranged in a shallow arc or horizontal row rather than superimposed pairs, at least in the outer stamens. Endlicheria is two-locular, but with E. punctulata paired with O. pauciflora, and other species placed with Rhodostemonodaphne (Figs. 3, 4), it is at least di-phyletic.

Licaria group. The branch uniting Dicypellium, Kubitzkia, Licaria, Paraia, Urbanodendron, and two species of Ocotea receives 93% bootstrap support (Fig. 3) and seems to be a natural alliance. Gamanthera and Phyllostemonodaphne (neither herein) associate with the Licaria group on morphological grounds. All these genera have cupules with double-rimmed (or more) margins. Given these unusual cupules, a generic alliance centered around Licaria has been informally recognized in recent morphological systems (Kostermans, 1957; Rohwer, 1993a). Ocotea quixos (Lam.) Kosterm. and O. veraguensis (Meisn.) Mez represent the Ocotea dendrodaphne species group, a group of 8 species remarkable in Ocotea for their ligulate stamens and double-rimmed cupules. A place in the Licaria group is thus not surprising. Their distance from the rest of Ocotea has been acknowledged by subgeneric (e.g., Mez, 1889; Rohwer, 1986) and even generic status; e.g., Sassafridium (Meissner, 1864). Hutchinson (1964) even placed O. veraguensis (as Sassafridium) in a monotypic tribe because he interpreted the locelli in the third staminal whorl to be introrse, a condition only known in Laureae. In fact the locelli are latrorse-introrse, as also found in Dicypellium and Urbanodendron, both of the Li caria group. Elsewhere in Ocotea, double-rimmed cupules are found in a few dioecious species, e.g., O. cujumary Mart. and O. floribunda (Sw.) Mez. It is unlikely that these species will assign to the Li caria group since their morphologically close relatives, O. guianensis Aubl. and O. percoriacea (Meisn.) Kosterm., respectively, are firmly seated in the dioecious clade discussed above.

Remaining taxa place near the Licaria group without strong support (Fig. 3). Ocotea rhynchophylla (Meisn.) Mez and O. odorifera (Vell.) Rohwer represent species groups that Rohwer (1986) considered intermediate between the O. dendrodaphne species group (including O. quixos and O. veraguensis herein) and the rest of Ocotea. Their position near the Licaria group is consistent with Rohwer's interpretation. Aniba, too, has been associated with Licaria (e.g., Kubitzki, 1982), but has simplerimmed or rarely weakly double-rimmed cupules.

Ocotea insularis (Meisn.) Mez and Aiouea costaricensis (Mez) Kosterm. are united with 100% bootstrap support (Figs. 3, 4). The two differ only in the number of locules per anther, again illustrating the weakness of this character in generic delimitation (van der Werff, 1984). Curiously, as noted by van der Werff (1988) and Rohwer et al. (1991), like A. costaricensis, other Aiouea species with closer ties to Ocotea are Central American (e.g., A. lundelliana C. K. Allen, not herein), while South American Aiouea associate with Cinnamomum (e.g., A. dubia and A. guianensis, Fig. 3).

Biogeography

Genera and clades in Lauraceae sort into two main geographic groups (Figs. 2, 4). Hypodaphnis, the Cryptocaryeae, Cassytha, and the Chlorocar-dium-Mezilaurus clade as seen in Figure 1 are predominantly or entirely southern hemispheric, while Caryodaphnopsis, Neocinnamomum, the Persea group, the Cinnamomum group, and Laureae are either Asian or have amphi-Pacific distributions (Figs. 2, 4). The distributions of these two main groups are consistent with Gondwanan and Laurasian histories, respectively, but the geographic distribution of the Ocotea complex is not as easily categorized. This diverse clade is mostly neotropical with a Macaronesia-Afro-Malagasy element added by approximately 40 Old World species of Ocotea. Whether ancestors of the Ocotea complex migrated into South America via Africa (Raven \& Axelrod, 1974) or via North America (Rohwer, 1986; Taylor, 1988; Rohwer \& Kubitzki, 1993; Rohwer, 2000) is not evident from the topology alone.

Paleogeographic reconstructions of West Gondwana breakup estimate that direct land connections between Africa and South America were lost by the Upper Mid-Cretaceous, ca. 90 Mya (Sclater et al., 1977; Scotese et al., 1988; Parrish, 1993). Therefore, if the trans-Atlantic disjunction in the Ocotea complex can be attributed to West Gondwanan breakup, it would have to be at least 90 Mya old. This biogeographic scenario was simulated on the parsimony-based ITS topology by fixing the New World-Old World divergence (node e in Fig. 5a and Table 3a) at 90 My and using the resulting rate of molecular evolution to estimate divergence times for other nodes. This calibration yields a rate of 0.000275 substitutions per site per million years, a rate that halves the lowest ever reported for ITS (Suh et al., 1993), and which places the divergence of the Chlorocardium-Mezilaurus clade (Fig. 3; and represented by Sextonia pubescens van der Werff in Fig. 5a) from the Perseeae-Laureae clade (includes
the Ocotea complex) at 354 Mya (node a in Fig. 5a and Table 3a). This Devonian age precedes earliest undisputed angiosperm fossils. Furthermore, if the equivalent node in the basal topology (node G in Fig. 5b and Table 3b) is fixed at 354 Mya and divergence times for earlier lineages calculated, the radiation of the family is placed in the Pre-Cambrian, ca. 682 Mya. Therefore, the neotropical-African disjunction shown by the Ocotea complex is likely to be much younger than West Gondwanan breakup, and some amount of dispersal must have been involved.

How did the Ocotea complex, and other members of the family, reach the New World? In both morphological and molecular attributes the Chlorocar-dium-Mezilaurus clade occupies a basal and isolated position in Lauraceae. It is also the only lineage of basal Lauraceae restricted to South America (reaching its northern limit in Costa Rica). These qualities argue for early isolation of the Chlo-rocardium-Mezilaurus clade in South America, presumably initiated by West Gondwana breakup. To assess this biogeographic scenario on other divergence times, substitution rates in the ITS and $r p l 16$ data sets were re-calibrated using an Upper MidCretaceous (90 Mya) separation of South America from Africa to date the divergence of the Chloro-cardium-Mezilaurus clade from its sister group (node a in Fig. 5a and Table 3a, node G in Fig. 5b and Table 3b). With this second calibration, radiation of Lauraceae was estimated at $174 \pm 32 \mathrm{Mya}$ (node \dot{A} in Fig. 5b and Table 3b), and radiation of the terminal Perseeae-Laureae clade was placed in the Eocene, 44 ± 7 Mya (node b in Fig. 5a and Table 3a). This estimate for Eocene radiation of the latter group is supported by the fossil record. The hemispherical cupules of the London Clay Flora (Reid \& Chandler, 1933) are restricted to Laureae and Cinnamomeae of the Perseeae-Laureae clade. Well-preserved flowers with the general floral structure of genera in the Persea group and Cinnamomeae, but not other members of Lauraceae, have been described from Eocene deposits in North America (Taylor, 1988) and Late Eocene Baltic amber (Conwentz, 1886). Thus, our second calibration, that which credits South American isolation of the Chlorocardium-Mezilaurus clade to West Gondwanan breakup, estimates a realistic age for radiation of the family and complements fossil evidence of radiation of the Perseeae-Laureae group in Early Tertiary Laurasia. This congruence provides confidence that age estimates based on our second calibration are good approximations of actual divergence times.

BASAL LINEAGES

Raven and Axelrod (1974) situated the cradle of the angiosperms in West Gondwana, and its proximity to Laurasia was pivotal to the Mid-Cretaceous presence of angiosperm pollen in the South Laurasia Province (sensu Brenner, 1976). Any explanation of the biogeographic history of Lauraceae also requires early migratory routes between Laurasia and West Gondwana. Southern hemispheric Hypodaphnis, Cryptocaryeae, Cassytha, and the Chlorocardium-Mezilaurus clade indicate Gondwanan history, but Caryodaphnopsis and Neocinnamomum appear to be Laurasian.

Caryodaphnopsis is disjunct between tropical America and tropical Asia, while Neocinnamomum is known only from tropical Asia. They represent the only early lineages in Lauraceae that are present in Asia but are not also known to occur in Africa, Madagascar, and Australia, in contrast to widespread genera in Cryptocaryeae and Cassytha. The fossil record suggests that both Caryodaphnopsis and Neocinnamomum have an ancient Laurasian history. The fossil wood taxon Caryodaphnopsoxylon richteri Gottwald (1992) places the unique xylem anatomy of Caryodaphnopsis in Late Eocene Germany. The fossil flower Neusenia tetrasporangiata Eklund from Late Cretaceous North America compares favorably with Neocinnamomum, and flowers and fruits from the same locality can be compared to Caryodaphnopsis (e.g., Eklund, 2000). Although the affinities of the latter fossils cannot be unambiguously assigned, the implied antiquity of Caryodaphnopsis and Neocinnamomum is consistent with their relatively basal positions in Lauraceae. Most likely, these modern genera are descendants of the Cretaceous Laurasian flora of Lauraceae documented by the fossil genera Mauldinia (Drinnan et al., 1990; Herendeen et al., 1994, 1999; Eklund \& Kvaček, 1998) and Perseanthus (Herendeen et al., 1994).

The timing of events that resulted in the modern distribution of Caryodaphnopsis can further elucidate its biogeographic history. A relictual presence in South America would imply a continuous paleodistribution from South America to Eurasia. However, such continental configuration also provides direct connections between South America and other Gondwanan terrains (reviewed in Hallam, 1994), and preferential extinction in these Southern landmasses would be necessary to explain the modern disjunction. Alternatively, the rpll6 data set estimates a relatively recent separation ($44 \pm 14 \mathrm{Mya}$) of South American C. tomentosa van der Werff from Asian C. bilocellata van der Werff (node F in Fig.

5 b and Table 3b). This would rule out a relictual presence in South America and is consistent with the view that disjunct distributions between tropical Asia and tropical America are derived from ancestral boreotropical ranges disrupted by Late Eocene climatic cooling (e.g., Wolfe, 1975; Tiffney, 1985a, b; Zhengyi, 1983). Moreover, this calibration implies that isolation of Caryodaphnopsis from the rest of the family can be staged in the Early Cretaceous about 140 Mya (node E in Fig. 5b and Table 3b). Increasing separation of Laurasia from Gondwana, a salient feature of Early Cretaceous paleogeography (reviewed in Hallam, 1994), would have disrupted trans-Tethyan ancestral ranges and precipitated the next biogeographic phase in Lauraceae, i.e., radiation on increasingly distant Laurasian and Gondwanan landmasses.

Accordingly, in the Northern Hemisphere, the Mid-Cretaceous fossil taxa, and the direct ancestors of Caryodaphnopsis and Neocinnamomum, would have spread throughout southern Laurasia until decreasing temperatures and the opening of the north Atlantic constricted their descendants to tropical Asia and America. To the south, truly pantropical genera and clades would have attained their widespread distribution, with seafloor spreading in the South Atlantic and Indian Oceans leading to increased regional endemicity. These continental reconfigurations appear to be reflected in the distribution of Southern Hemispheric genera.

Of pantropical genera, Beilschmiedia and Cryptocarya are the most widespread. The genetic dis-tance-based age estimations indicate that these genera diverged from their most recent common ancestor about $90 \pm 20 \mathrm{Mya}$ (node D in Fig. 5b and Table 3b). Variance around these age estimations argues for direct migration throughout Gondwana, and a widespread pre-drift distribution for both Beilschmiedia and Cryptocarya. The presence of both genera in continental Asia may be due to the rafting of the Indian subcontinent and other Gondwanan fragments to the Asian plate. Later accretions of Gondwanan fragments with the Asian plate and Miocene island hopping across the Indo-Malayan region may also have been involved. The pantropical distribution of Cassytha is mostly due to one widespread species, C. fliformis L.; all other approximately 20 species are restricted to the Old World and show high regional endemism in Australia (Weber, 1981). Although the Southern Hemispheric distribution centered in the Old World favors a predominantly East Gondwanan history for Cassytha, the possibility of a Laurasian history followed by radiation into its associated xeric habitat
cannot be discounted. All other Southern Hemispheric genera have narrower ranges.
Hypodaphnis may be relictual in Central Africa since its ancestors apparently diverged from the rest of the family when direct migration between Gondwana and Laurasia was possible (node A in Fig. 5b and Table 3a). Eusideroxylon ranges from Borneo to Sumatra, and Potoxylon is endemic to Borneo. With their placement in predominantly Southern Hemispheric Cryptocaryeae, it is possible to regard them as Gondwanan relicts as well. However, their separation from the rest of the tribe is dated at about 120 Mya (node C, Fig. 5b), an age that permits early migration into Laurasia, as envisioned for Caryodaphnopsis above. Further, Trianthera eusideroxylon Conwentz, an amber-embedded flower from the Eocene-Oligocene boundary of the Baltic area (Conwentz, 1886) compares remarkably well with Eusideroxylon and adds to the possibility of a Gondwanan-Laurasian dichotomy in Cryptocaryeae. Upper Cretaceous appearance of the boreotropical Aquilapollenites in Borneo (Wolfe, 1975; and references therein), and the composite geological nature of the Indo-Malayan region (Burrett et al., 1991; Michaux, 1991; and references therein), are also consistent with Laurasian history for Eusideroxylon and Potoxylon.

All other members of Cryptocaryeae and their allies are restricted to, or best represented in, austral parts of the Old World, i.e., East Gondwanan and derived terrains. At the other end of the former southern continent, the Chlorocardium-Mezilaurus clade is restricted to South America. Thus, among these Southern Hemispheric genera and clades, more basal groups are either widespread or relictual, and more derived groups are restricted to Eastern or Western Gondwanan fragments, consistent with the progressive dismantling of Gondwana.

The Perseeae-Laureae Clade
ROUTES TO LAURASIA
The Perseeae-Laureae clade diverged from its sister group, the Chlorocardium-Mezilaurus clade, since the Upper Mid-Cretaceous, but until fossil members appeared in Eocene Laurasia its biogeographic history is a mystery. Three alternative scenarios are conceivable. In a vicariant vein, consider a West Gondwanan common ancestor for the Per-seeae-Laureae clade and its sister group, with tectonic activity isolating direct ancestors of the Chlo-rocardium-Mezilaurus clade on South America while stranding those of the Perseeae-Laureae clade on Africa. Ancestors of the Perseeae-Laureae clade then migrate to Laurasia via North Africa.

Alternatively, the northern route of the PerseeaeLaureae clade could have included a South American phase with subsequent migration to North America and Eurasia. Precursors of the Greater Antilles spanned the Panamanian Isthmus as an island chain in the Mid-Cretaceous (Pindell et al., 1988) providing a stepping-stone migratory route out of South America. Yet a third possibility is that the common ancestor of the Perseeae-Laureae and Chlorocardium-Mezilaurus clades was Laurasian and shared the former northern continent with Caryodaphnopsis and Neocinnamomum. This scenario would require that the Chlorocardium-Mezilaurus clade migrated into South America via the MidCretaceous stepping-stone route provided by protoGreater Antilles. Evidence of an early faunal and floristic exchange across this region has accumulated (e.g., Cadle, 1985; Estes \& Baez, 1985; Graham, 1995; Burnham \& Graham, 1999), but the taxa involved are usually distributed throughout northern Central America and South America, while the Chlorocardium-Mezilaurus clade only reaches Costa Rica to the north.

Without an unambiguous Cretaceous fossil record for the Perseeae-Laureae clade, we favor the first or African scenario. North Africa is today part of the largest desert system in the world, but was covered by tropical forest well into the Miocene (Axelrod \& Raven, 1978). During the Tertiary, Africa moved progressively northward, and migration to Eurasia across the narrowing Tethys would have become increasingly feasible. The South American scenario invokes a circuitous route to Eurasia and fails to explain why no members of the PerseeaeLaureae clade remain relictual in South America. An early Laurasian history would have to account for the absence of the Chlorocardium-Mezilaurus clade in Asia.

Routes to the New World I: Persea Group, Cinnamomum Group, and Laureae

The Persea group is most diverse in Asia, with only ca. 80 of its approximately 400 species found in the New World. These occur mainly in montane forests in Central and South America and range from Mexico to Chile, reaching the Atlantic coastal forests in southeastern Brazil. In the Old World, two taxa are present in the Canary Islands. Apollonias barbujana (Cav.) Bornm. is placed in an unresolved Asian clade with Alseodaphne, Dehaasia, Persea subg. Machilus, and Phoebe (Figs. 3, 4). The other Canary Island endemic, Persea indica (L.) Spreng., was not sampled here. Pending better resolution within the Persea group, current age estimates sug-
gest that its Asian and American members diverged around the Eocene-Oligocene boundary, ca. 32 Mya (node z in Fig. 5a and Table 3a).

The distribution and representation of the Cinnamomum group in the Neotropics and Asia is almost identical to that of the Persea group. Whether New and Old World clades in the Cinnamomum group constitute a monophyletic group is not yet clear. From age estimates obtained by enforcing monophyly (Fig. 5a), the assumed common ancestral gene pool divided around the Eocene-Oligocene boundary, a divergence time coincident with that calculated for the Persea group. These similarities in the tropical amphi-Pacific disjunctions in the Cinnamomum and Persea groups suggest commonality. Disruption of boreotropical ranges by climatic cooling around the Eocene-Oligocene boundary (Wolfe, 1975; Tiffney, 1985a, b; Zhengyi, 1983) would be consistent with the present age estimates. Already tenuous biotic links across the North Atlantic and/or Pacific were severed at this time, and divided Cinnamomum and Persea groups receded to warmer paleolatitudes in Asia and the Americas.

Like the Cinnamomum and Persea groups, Laureae are most diverse in Asia with a smaller range and representation in the New World. Lindera, Litsea, and Sassafras reach the Americas, but of these only Litsea ranges south of temperate North America, to Costa Rica. The unsettled generic delimitation of Litsea and Lindera cautions against assessment of their disjunctions from morphology, but monophyly of Sassafras is well supported here (Figs. 3, 4), providing an opportunity to assess the classic North America-Eastern Asia disjunction first brought into scientific focus by Asa Gray (Boufford \& Spongberg, 1983). In Sassafras, divergence of Asian S. tzumu (Hemsl.) Hemsl. from North American S. albidum (Nutt.) Nees was estimated at about 12 Mya (node x in Fig. 5a and Table 3a). This northern temperate disjunction is much younger than the ± 30 Mya old tropical amphiPacific disjunctions shown by Cinnamomum and Persea groups. While climatic cooling in the Eocene and Oligocene (Wolfe, 1975; Hallam, 1994) restricted tropical taxa to lower paleolatitudes, for temperate taxa intercontinental connections across northern latitudes would have been possible until much later in the Tertiary. The estimated divergence time separating Asian from North American Sassafras coincides well with opening of the Bering Strait, and supports Wolfe and Leopold's (1967) view that Mid-Miocene loss of the Bering land bridge is the most likely cause of north-temperate disjunctions between North America and Asia.

ROUTES TO THE NEW WORLD II: THE OCOTEA COMPLEX

The Ocotea complex accommodates most of the taxonomic diversity of neotropical Lauraceae. In the Old World the complex is weakly represented in Macaronesia, Africa, and Madagascar. Any trans-Atlantic disjunction produced by West Gondwanan vicariance was discounted (above) and instead the disjunction dates to around the Oligo-cene-Miocene boundary, ca. 23 ± 5 Mya (node e in Fig. 5a and Table 3a). The estimated EoceneOligocene age (node d in Fig. 5a and Table 3a) of the Ocotea complex implies an origin concurrent with the southward movement of megathermal forests (Wolfe, 1975; Hallam, 1994), and its derived position relative to the previous clades indicates boreotropical ancestry. Unlike previous Laurasian taxa, the Ocotea complex is absent in Asia. While Persea and Cinnamomum groups appear as lower montane taxa in the Neotropics, the Ocotea complex is especially diverse in the lowlands of South America. Given these differences in distribution and a relatively recent trans-Atlantic disjunction, their biogeographic history may be quite different from that of the other boreotropical lineages. In this regard xeric tolerances shown by African Ocotea, Californian Umbellularia, and the Central Americacentered Nectandra coriacea group may be significant. These taxa place basally in the complex, and their sclerophyllous habit, unusual for Lauraceae, adds to taxa that link the Madrean-Tethyan sclerophyllous flora discussed by Axelrod (1975). This broad-leaved flora ranged along the Tethyan coast from North America to southeastern Eurasia and North Africa, and existed relatively continuously since the Late Eocene, only disrupted by increased climatic cooling and drying at the end of the Oligocene (Axelrod, 1975). The 23 ± 5 Mya estimate of the trans-Atlantic disjunction in the Ocotea complex is consistent with that expected for taxa with ancestral Madrean-Tethyan ranges (e.g., Fritsch, 1996). Great disparity in species diversity on the two sides of the Atlantic may be attributed to disproportionate opportunities for speciation and differentiation. In the Neogene, continental Africa moves progressively northward into a drier and cooler climate (Hallam, 1994), while tectonic uplift in the Panamanian isthmus (Pindell et al., 1988) provides the Madrean flora of southeastern North America with opportunities for stepping-stone dispersal into South America.

Separation of the Central America-centered Ocotea helicterifolia species group from its speciose South America-centered sister group (Fig. 4) ap-
proximately 20 Mya (node f in Fig.5a and Table 3a) argues for arrival of the Ocotea complex in South America prior to Pliocene closure of the Panamanian isthmus. As the timing of the separation coincides with increased uplift of the northern Andes in the early Miocene, it is conceivable that Andean orogeny divided the ancestral range. Further, since lowland genera of the Ocotea complex place in either South- or Central America-centered clades (Fig. 4), Andean orogeny appears to maintain generic endemism while allowing lower montane Cinnamomum and Persea groups to range widely. Exceptionally, South America-centered clades range throughout Central America with widespread species, e.g., N. cuspidata Nees of Nectandra s. str. (Fig. 4), and vice versa, e.g., N. purpurea of the Nectandra coriacea species group (Fig. 4). Although these may be secondary range expansions of indigenous South and Central American taxa (e.g., Rohwer \& Kubitzki, 1993), they indicate the underlying complexity of biogeographic patterns.

The biogeographic history of Lauraceae outlined here shares much with that proposed by Doyle and Le Thomas (1997) for Annonaceae. As in that diverse magnoliid family, three main phases are recognizable. Early radiation of both families apparently occurred when migration between Gondwana and Laurasia was possible. Next, diversification throughout the Cretaceous produced lauraceous Cryptocaryeae, perhaps Cassytha, and the Chloro-cardium-Mezilaurus clade on Gondwana, with Caryodaphnopsis and its allies on Laurasia. In Annonaceae, Anaxagorea appears to be the counterpart of Caryodaphnopsis. In both families, renewed contact between Gondwanan and Laurasian fragments in the Early Tertiary resulted in a second radiation on Laurasian terrains. In Lauraceae, this boreotropical phase produced the Perseeae-Laureae clade, but unlike Annonaceae, its descendants did not only recede to the Asian tropics with climatic cooling. Three of the four major lineages of Lauraceae evolved during this period, migrated to the Neotropics, and one of these, the Ocotea complex, underwent a major radiation in the New World. This latter radiation has few parallels in neotropical phytogeography. There are indications that some lineages in the Leguminosae (Lavin \& Luckow, 1993) and Melastomataceae (Renner \& Meyer, in press) are derived from boreotropical ancestors, and Krutzsch (1989) listed possible examples from Bombacaceae, Olacaceae, and Symplocaceae. The emerging prospect of a larger contingent of Laurasian elements in the lowland Neotropics than previously recognized can be assessed when phylogenies of more tropical taxa become available.

Outlook: Toward a Phylogenetic Arrangement of Lauraceae

The utility of morphological classification that expresses evolutionary history and relationships with support from molecular data is obvious. For Lauraceae, appropriate characters to be employed in such a scheme are elusive. Among traditional morphological characters, the number of locules per anther attains generic and even supra-generic importance in early schemes (Nees, 1836; Meissner, 1864; Bentham, 1880; Pax, 1889; Mez, 1889; Kostermans, 1957). Several examples of the weakness of this character have been identified and are confirmed by the present molecular data. Other characters do not fare much better. The use of umbellate involucrate inflorescences to circumscribe Laureae is a salient feature of most classification schemes (e.g., Rohwer, 1993a; van der Werff \& Richter, 1996), but this syndrome clearly evolved independently in Umbellularia. Similarly, dioecy appears three times on the phylogeny herein, in Hypodaphnis, in Laureae, and again in the Ocotea complex. Further, Kostermans' (1957) system stresses degree of cupule development, but both extremes are found in Cryptocaryeae, and the noncupulate condition of Beilschmiedia and Endiandra therein reappears in the distantly related Persea group. Equally problematical, morphological synapomorphies are not readily noted for several clades that receive strong molecular support. In the case of Cassytha and Neocinnamomum long branch attraction can be held responsible, but on closer examination genera of the Chlorocardium-Mezilaurus clade can be allied by a mosaic of characters.

Although major clades identified by molecular characters do not yield easily to morphological interpretation, a consensus over major generic groupings in Lauraceae appears to be within reach. Cryptocaryeae as circumscribed by van der Werff and Richter (1996), but probably without Hypodaphnis, are now supported by anatomy (Richter, 1981), embryology (Heo et al., 1998), and molecular data (Rohwer, 2000; herein). Considerable molecular support exists for the Chlorocardium-Mezilaurus clade, a group that is unique from both biogeographic and morphological perspectives. Further consensus concerns a large clade comprised of most remaining genera in Lauraceae that has been found by this and previous molecular data (Rohwer, 2000) and supported by anatomy (Richter, 1981). This group includes all genera placed in the tribes Perseeae and Laureae by van der Werff and Richter (1996), but its subdivision warrants re-examination. Toward this, Perseeae could be more narrowly cir-
cumscribed to accommodate just the Persea group, and Umbellularia removed from Laureae to Cinnamomeae. The latter also includes all remaining genera of van der Werff and Richter's Perseeae. Several smaller, although morphologically distinctive, taxa are not clearly placed, particularly in the case of Cassytha, to a lesser extent for Caryodaphnopsis and Neocinnamomum, and perhaps Hy podaphnis. At a lower taxonomic level, increased sampling is necessary for a thorough reconsideration of current generic concepts among Lauraceae. In this study, only the Ocotea complex has been representatively sampled; seemingly natural groups of genera and parts of larger genera have been identified within this complex. Similarly, increased sampling in other main clades identified here will improve our understanding of relationships among Lauraceae.

Literature Cited

Asmussen, C. 1999. Toward a chloroplast DNA phylogeny of the tribe Geonomeae (Palmae). Mem. New York Bot. Gard. 83: 121-129.
Axelrod, D. 1975. Evolution and biogeography of Mad-rean-Tethyan sclerophyll vegetation. Ann. Missouri Bot. Gard. 62: 280-334.

- \& P. Raven. 1978. Late Cretaceous and Tertiary vegetation history of Africa. Pp. 77-130 in M. Werger (editor), Biogeography and Ecology of Southern Africa. Junk, The Hague.
Bambacioni-Mezzetti, V. 1941. Ricerche morfologiche sulle Lauracee, embriologia della Umbellularia californica Nutt. e del Laurus canariensis Webb. Ann. Bot. (Rome) 22: 99-119.
Bentham, G. 1880. Laurinae. Pp. 146-165 in G. Bentham \& J. Hooker (editors), Genera Plantarum 3. L. Reeve, London.
Blattner, F. 1999. Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 29: 1180-1186.
Boufford, D. \& J. Spongberg. 1983. Eastern Asian-eastern North American phytogeographical relationshipsA history from the time of Linnaeus to the twentieth century. Ann. Missouri Bot. Gard. 70: 423-439.
Brenner, G. 1976. Middle Cretaceous floral provinces and early migrations of angiosperms. Pp. 23-47 in C. Beck (editor), Origins and Early Evolution of Angiosperms. Columbia Univ. Press, New York.
Burnham, R. \& A. Graham. 1999. The history of neotropical vegetation: New developments and status. Ann. Missouri Bot. Gard. 86: 546-589.
Burrett, C., N. Duhig, R. Berry \& R. Varne. 1991. Asian and south-western Pacific continental terranes derived from Gondwana, and their biogeographic significance. Austral. Syst. Bot. 4: 13-24.
Cadle, J. 1985. The neotropical Colubrid snake fauna (Serpentes: Colubridae): Lineage components and biogeography. Syst. Zool. 34: 1-20.
Conwentz, H. 1886. Die Flora des Bernsteins, Vol. 2. Die Angiosperms des Bernsteins. Willhelm Engelmann, Danzig.
Doyle, J. \& A. Le Thomas. 1997. Phylogeny and geo-
graphic history of Annonaceae. Géogr. Phys. Quatern. 51: 353-361.
- \& P. Endress. 2000. Morphological phylogenetic analysis of basal angiosperms: Comparison and combination with molecular data. Int. J. Pl. Sci. 161(Suppl.): S121-S153.
Drinnan, A., P. Crane, E. Friis \& K. Pedersen. 1990. Lauraceous flowers form the Potomac Group (Mid-Cretaceous) of Eastern North America. Bot. Gaz. 151: 370384.

Eklund, H. 2000. Lauraceous flowers from the Late Cretaceous of North Carolina, U.S.A. Bot. J. Linn. Soc. 132: 397-428.
_ \& J. Kvaček. 1998. Lauraceous inflorescences and flowers from the Cenomanian of Bohemia (Czech Republic, Central Europe). Int. J. Pl. Sci. 159: 668686.

Estes, R. \& A. Baez. 1985. Herpetofaunas of North and South America during the Late Cretaceous and Cenozoic: Evidence for interchange? Pp. 139-197 in F. Stehli \& S. Webb (editors), The Great American Biotic Interchange. Plenum Press, New York.
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27: 401-410.
1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
Fritsch, P. 1996. Isozyme analysis of intercontinental disjuncts within Styrax (Styracaceae): Implications for the Madrean-Tethyan hypothesis. Amer. J. Bot. 83: 342355.

Gentry, A. 1982. Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climate fluctuations, or an accident of the Andean orogeny? Ann. Missouri Bot. Gard. 69: 557-593.

- 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Gard. 75: 1-34.
Goldblatt, P. (Editor). 1993. Biological Relationships Between Africa and South America. Yale Univ. Press, New Haven.
Gottwald, H. 1992. Hölzer aus marinen Sanden des oberen Eozän von Helmstedt (Niedersachsen). Palaeontographica, Abt. B. Paläophytol. 225: 27-103.
Graham, A. 1995. Development of affinities between Mexican/Central American and northern South American lowland and lower montane vegetation during the Tertiary. Pp. 11-22 in S. Churchill, H. Balslev, E. Forero \& J. Luteyn (editors), Biodiversity and Conservation of Neotropical Montane Forests. The New York Botanical Garden, New York.
Hallam, A. 1994. An Outline of Phanerozoic Biogeography. Oxford Univ. Press, New York.
Hasegawa, M., H. Kishino \& T. Yano. 1985. Dating the human-ape splitting by a molecular clock. J. Molec. Evol. 22: 160-174.
Heo, K. \& H. Tobe. 1995. Embryology and relationships of Gyrocarpus and Hernandia (Hernandiaceae). J. Pl. Res. 108: 327-341.
- H. van der Werff \& H. Tobe. 1998. Embryology and relationships of Lauraceae (Laurales). Bot. J. Linn. Soc. 126: 295-322.
Herendeen, P., W. Crepet \& K. Nixon. 1994. Fossil flowers and pollen of Lauraceae from the Upper Cretaceous of New Jersey. Pl. Syst. Evol. 189: 29-40.
, S. Magallon-Puebla, R. Lupia, R. Crane \& J.

Kobylinska. 1999. A preliminary conspectus of the AIlon flora of the late Cretaceous (Late Santonian) of Central Georgia, U.S.A. Ann. Missouri Bot. Gard. 86: 407471.

Hillis, D. \& J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Bot. 42: 182-192.
Hutchinson, J. 1964. The Genera of Flowering Plants (Dicotyledonae), Vol. 1. Clarendon Press, London.
Hyland, B. 1989. A revision of Lauraceae in Australia (excluding Cassytha). Austral. Syst. Bot. 2: 135-267.
Kostermans, A. 1957. Lauraceae. Reinwardtia 4: 193256.

- 1961. The New World species of Cinnamomum Trew (Lauraceae). Reinwardtia 6: 17-24.
- 1974a. A monograph of the genus Neocinnamomum Liou Ho. Reinwardtia 9: 85-96.
- 1974b. A monograph of Caryodaphnopsis A. Shaw. Reinwardtia 9: 123-137.

1993. Notes on Triadodaphne Kosterm. (Lauraceae). Rheedea 3: 129-131.
-, H. Pinkley \& W. Stern. 1969. A new Amazonian arrow poison: Ocotea venenosa. Bot. Mus. Leafl. 22: 241-252.
Krutzsch, W. 1989. Paleogeography and historical phytogeography (paleochorology) in the Neophyticum. Pl. Syst. Evol. 162: 5-61.
Kubitzki, K. 1982. Lauraceae: Aniba. Fl. Neotrop. Monogr. 31: 1-84.
Kuzoff, R., J. Sweere, D. Soltis, P. Soltis \& E. Zimmer. 1998. The phylogenetic potential of entire 26 S rDNA sequences in plants. Molec. Biol. Evol. 15: 251-263.
Lavin, M. \& M. Luckow. 1993. Origins and relationships of tropical North America in the context of the boreotropics hypothesis. Amer. J. Bot. 80: 1-14.
Li, J. \& D. Christophel. 2000. Systematic relationships within the Litsea complex (Lauraceae): A cladistic analysis on the basis of morphological and leaf cuticle data. Austral. Syst. Bot. 13: 1-13.
Lorea-Hernandez, F. 1995. Mocinnodaphne: Un género nuevo de la familia Lauraceae en la flora de México. Acta Bot. Mex. 32: 25-32.
Lyons-Weiler, J. \& G. Hoelzer. 1997. Escaping the Felsenstein Zone by detecting long branches in phylogenetic data. Molec. Phylogenet. Evol. 8: 375-384.
Meissner, C. 1864. Lauraceae. Pp. 1-260 in A. de Candolle (editor), Prodromus Systematis Naturalis Regni Vegetablis. XV. Sumptibus Victoris Masson et Fillii, Paris.
Merwe, J. van der, A. van Wyk \& P. Kok. 1988. Dahlgrenodendron, a remarkable new genus of Lauraceae from Natal and Pondoland. S. Afr. J. Bot. 54: 80-88.
$\mathrm{Mez}, \mathrm{C} .1889$. Lauraceae Americanae. Jahrb. Königl. Bot. Gart. Berlin 5: 1-556.
Michaux, B. 1991. Distributional patterns and tectonic development in Indonesia: Wallace reinterpreted. Austral. Syst. Bot. 4: 25-36.
Nees, C. 1836. Systema Laurinarum. Sumtibus Veitii et Sociorum. Berlin.
Parrish. J. 1993. The paleogeography of the opening South Atlantic. Pp. 8-27 in W. George \& R. Lavocat (editors), The Africa-South America Connection. Clarendon Press, Oxford.
Pax, F. 1889. Lauraceae. Pp. 106-126 in A. Engler \& K. Prantl (editors), Die natürlichen Pflanzenfamilien. Vol. III. Engelmann, Leipzig.
Pindell, J., S. Cande, W. Pitman, D. Rowley, J. Dewey, J.

LaBrecque \& W. Haxby. 1988. A plate-kinematic framework for models of Caribbean evolution. Technophysics 155: 121-138.
Qiu, Y-L., J. Lee, F. Bernasconi-Quadroni, D. Soltis, P. Soltis, M. Zanis, E. Zimmer, Z. Chen, V. Savolainen \& M. Chase. 1999. The earliest angiosperms: Evidence from mitochondrial, plastid, and nuclear genomes. Nature 402: 404-407.
Raven, P. \& D. Axelrod. 1974. Angiosperm biogeography and past continental movements. Ann. Missouri Bot. Gard. 61: 539-673.
Reid, E. \& M. Chandler. 1933. The Flora of the London Clay. British Museum (Natural History), London.
Renner, S. 1999. Circumscription and phylogeny of the Laurales: Evidence from molecular and morphological data. Amer. J. Bot. 89: 1301-1315.
$-\&$ A. Chanderbali. 2000. What is the relationship among Hernandiaceae, Lauraceae, and Monimiaceae, and why is this question so difficult to answer? Int. J. Pl. Sci. 161(Suppl.): S109-S119.
\& K. Meyer. Melastomeae come full circle: Biogeographic reconstruction and molecular dating. Evolution (in press).
Richter, H. 1981. Anatomie des sekundären Xylems und der Rinde der Lauraceae. Sonderb. Naturwiss. Vereins Hamburg 5: 1-148.
Rohwer, J. 1986. Prodromus einer Monographie der Gattung Ocotea Aubl. (Lauraceae). Mitt. Inst. Allg. Bot. Hamburg 20: 3-278.
. 1991. Borderline cases between Ocotea, Nectan$d r a$ and Phoebe (Lauraceae): The marginal species of the Ocotea helicterifolia-group, including the O. hey-deana-group. Bot. Jahrb. Syst. 112: 365-397.
_. 1993a. Lauraceae. Pp. 426-437 in K. Kubitzki, J. Rohwer \& V. Bittrich (editors), The Families and Genera of Flowering Plants. Springer-Verlag, Berlin. 332.
2000. Towards a phylogenetic classification of the Lauraceae: Evidence from matK sequences. Syst. Bot. 25: 60-71.
\& K. Kubitzki. 1993. Ecological differentiation in Nectandra (Lauraceae) and its historical implications. Bot. Acta 106: 88-99.
, H. Richter \& H. van der Werff. 1991. Two new genera of Neotropical Lauraceae and critical remarks on the generic delimitation. Ann. Missouri Bot. Gard. 78: 388-400.
Sang, T., D. Crawford \& T. Stuessy. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer. J. Bot. 84: 1120-1136.
Sclater, J., S. Hellinger \& C. Tapscott. 1977. The paleobathymetry of the Atlantic Ocean from the Jurassic to the present. J. Geol. 85: 509-952.
Scotese, C., L. Gahagan \& R. Larsen. 1988. Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins. Technophysics 155: 27-48.
Siddall, M. \& M. Whiting. 1999. Long-branch abstractions. Cladistics 15: 9-24.
Suh, Y., L. Thein, H. Reeve \& E. Zimmer. 1993. Molec-
ular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Amer. J. Bot. 80: 1042-1055.
Swofford, D. 1998. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4.0b4. Illinois Natural History Survey, Champaign, Illinois.
Taberlet, P., L. Gielly, G. Pautou \& J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 11051109.

Taylor, D. 1988. Eocene floral evidence of Lauraceae: Corroboration of the North American megafossil record. Amer. J. Bot. 75: 948-957.
Tiffney, B. 1985a. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J. Arnold Arbor. 66: 243-273.
. 1985b. The Eocene North Atlantic land bridge: Its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arbor. 66: 394.

Weber, J. 1981. A taxonomic revision of Cassytha (Lauraceae) in Australia. J. Adelaide Bot. Gard. 3: 187-262.
Werff, H. van der. 1984. Notes on neotropical Lauraceae. Ann. Missouri Bot. Gard. 71: 1180-1183.
1988. Eight new species and one new combination of neotropical Lauraceae. Ann. Missouri Bot. Gard. 75: 402-419.

- 1989. A new species of Persea (Lauraceae) from Surinam, with a discussion of its position within the genus. Ann. Missouri Bot. Gard. 76: 939-941.
-_. 1991. A key to the genera of Lauraceae in the New World. Ann. Missouri Bot. Gard. 78: 377-387.

1996. Ocotea ikonyokpe, a new species of Ocotea from Cameroon. Novon 6: 460-462.
_1997. Sextonia, a new genus of Lauraceae from South America. Novon 7: 436-439.
1997. 1999. New taxa and combinations in the Ocotea helicterifolia (Lauraceae) species group. Novon 9: 571583.
the Flora annotated key to the genera of Lauraceae in the Flora Malesiana region. Blumea (in press).

- \& H. G. Richter. 1996. Toward an improved classification of Lauraceae. Ann. Missouri Bot. Gard. 83: 409-418.
White, T., T. Birns, S. Lee \& J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp . 315-332 in M. Innis, D. Gelfand, J. Sninsky \& T. White (editors), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego.
Wolfe, J. 1975. Some aspects of plant geography of the Northern Hemisphere during the late Cretaceous and Tertiary. Ann. Missouri Bot. Gard. 62: 264-279.
$-\&$ E. Leopold. 1967. Neogene and Early Quaternary vegetation of northwestern North America and northeastern Asia. Pp. 193-206 in D. Hopkins (editor), The Bering Landbridge. Stanford Univ. Press, Stanford.
Zhengyi, W. 1983. On the significance of Pacific intercontinental discontinuity. Ann. Missouri Bot. Gard. 70: 577-590.

[^0]: ${ }^{1}$ The authors thank anonymous reviewers for insightful comments; K. Ueda for eight unpublished $\operatorname{trn} \mathrm{L}$-trnF sequences; J. Rohwer for six unpublished ITS sequences; M. Zanis for five at the time unpublished ITS/ $5.8 \mathrm{~S} / 26 \mathrm{~S}$ sequences; Y-L. Qiu for providing three DNA aliquots; the Harvard Herbaria for providing leaf material of Eusideroxylon; Andrea Schwarzbach for guidance in molecular techniques; and innumerable colleagues who helped to collect material of Lauraceae for this study. This study was undertaken as part of ASC's doctoral dissertation research at the University of Missouri-St. Louis, and was supported by grants from the Mallinckrodt Foundation administered by the International Center for Tropical Ecology, University of Missouri-St. Louis, and from the Smithsonian Institution's Biological Diversity of the Guianas Program to ASC; National Geographic Society grants 4631-91, 5635-96, and 6571-99 to HW; and grants from the University of Missouri system and University of Missouri-St. Louis to SSR. This article is Number 45 in the Smithsonian Institution's Biological Diversity of the Guianas Publication series.
 ${ }^{2}$ Department of Biology, University of Missouri-St.Louis, 8001 Natural Bridge Road, St. Louis, Missouri 631214499, U.S.A.
 ${ }^{3}$ Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166, U.S.A.

